Skip to main content

Advertisement

Log in

MDR1 (ABCB1) G1199A (Ser400Asn) polymorphism alters transepithelial permeability and sensitivity to anticancer agents

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

P-glycoprotein (P-gp), encoded by MDR1 (or ABCB1), is important in anticancer drug delivery and resistance. We evaluated alterations in P-gp-mediated transport of anticancer agents due to the MDR1 G1199A polymorphism.

Methods

Using stable recombinant epithelial cells expressing wild-type (MDR1 wt ) or G1199A (MDR1 1199A ), anticancer drug sensitivity and transepithelial permeability were evaluated.

Results

The recombinant cells MDR1 wt and MDR1 1199A displayed comparable doxorubicin resistance. However, MDR1 1199A cells displayed greater resistance to vinblastine, vincristine, paclitaxel, and VP-16 (11-, 2.9-, 1.9-, and 2.9-fold, respectively). Alterations in transepithelial permeability paralleled these changes. Efflux of doxorubicin was similar between MDR1 wt - and MDR1 1199A -expressing cells, while P-gp-mediated transport was greater for vinblastine and vincristine in MDR1 1199A cells (2.9- and 2.0-fold, respectively).

Conclusions

The occurrence and magnitude of the MDR1 G1199A effect is drug specific. Overall, the MDR1 G1199A polymorphism may impact anticancer efficacy through modulation of drug distribution and delivery to target tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

MDR1 or ABCB1 :

Multidrug resistance gene

P-gp:

P-glycoprotein

ABC:

ATP-binding cassette

BBB:

Blood–brain-barrier

SNP:

Single nucleotide polymorphism

MDR1 wt :

Wild-type MDR1

MDR1 1199A :

MDR1 G1199A polymorphism

EC50 :

Effective drug concentration necessary for 50% cell death

TEER:

Transepithelial electrical resistance values

P app :

Apparent permeability

P appA→B :

Apical-to-basolateral apparent permeability

P appB→A :

Basolateral-to-apical apparent permeability

References

  1. Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    Article  PubMed  CAS  Google Scholar 

  2. Woodahl EL, Ho RJ (2004) The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function. Curr Drug Metab 5:11–19

    Article  PubMed  CAS  Google Scholar 

  3. Woodahl EL, Yang Z, Bui T et al (2004) Multidrug resistance gene G1199A polymorphism alters efflux transport activity of P-glycoprotein. J Pharmacol Exp Ther 310:1199–1207

    Article  PubMed  CAS  Google Scholar 

  4. Cascorbi I, Gerloff T, Johne A et al (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69:169–174

    Article  PubMed  CAS  Google Scholar 

  5. Woodahl EL, Yang Z, Bui T et al (2005) MDR1 G1199A polymorphism alters permeability of HIV protease inhibitors across P-glycoprotein-expressing epithelial cells. Aids 19:1617–1625

    Article  PubMed  CAS  Google Scholar 

  6. Crouthamel MH, Wu D, Yang Z et al (2006) A novel MDR1 G1199T variant alters drug resistance and efflux transport activity of P-glycoprotein in recombinant Hek cells. J Pharm Sci 95:2767–2777

    Article  PubMed  CAS  Google Scholar 

  7. Green H, Soderkvist P, Rosenberg P et al (2008) ABCB1 G1199A polymorphism and ovarian cancer response to paclitaxel. J Pharm Sci 97:2045–2048

    Article  PubMed  CAS  Google Scholar 

  8. Polli JW, Wring SA, Humphreys JE et al (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 299:620–628

    PubMed  CAS  Google Scholar 

  9. Fine HA, Mayer RJ (1993) Primary central nervous system lymphoma. Ann Intern Med 119:1093–1104

    PubMed  CAS  Google Scholar 

  10. Deangelis LM (1995) Current management of primary central nervous system lymphoma. Oncology (Williston Park) 9:63–71 discussion 71, 75–66, 78

    CAS  Google Scholar 

  11. Haroun RI, Brem H (2000) Local drug delivery. Curr Opin Oncol 12:187–193

    Article  PubMed  CAS  Google Scholar 

  12. Balmaceda C (1998) Advances in brain tumor chemosensitivity. Curr Opin Oncol 10:194–200

    Article  PubMed  CAS  Google Scholar 

  13. Ohnishi T, Tamai I, Sakanaka K et al (1995) In vivo and in vitro evidence for ATP-dependency of P-glycoprotein-mediated efflux of doxorubicin at the blood–brain barrier. Biochem Pharmacol 49:1541–1544

    Article  PubMed  CAS  Google Scholar 

  14. Soffietti R, Ruda R, Bradac GB et al (1998) PCV chemotherapy for recurrent oligodendrogliomas and oligoastrocytomas. Neurosurgery 43:1066–1073

    Article  PubMed  CAS  Google Scholar 

  15. Kellie SJ, Koopmans P, Earl J et al (2004) Increasing the dosage of vincristine: a clinical and pharmacokinetic study of continuous-infusion vincristine in children with central nervous system tumors. Cancer 100:2637–2643

    Article  PubMed  CAS  Google Scholar 

  16. Rutkowski S, Bode U, Deinlein F et al (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352:978–986

    Article  PubMed  CAS  Google Scholar 

  17. Massimino M, Gandola L, Luksch R et al (2005) Sequential chemotherapy, high-dose thiotepa, circulating progenitor cell rescue, and radiotherapy for childhood high-grade glioma. Neuro Oncol 7:41–48

    Article  PubMed  CAS  Google Scholar 

  18. Suarez CR, Raj AB, Bertolone SJ et al (2004) Carboplatinum and vincristine chemotherapy for central nervous system gliofibroma: case report and review of the literature. J Pediatr Hematol Oncol 26:756–760

    Article  PubMed  Google Scholar 

  19. Menna P, Salvatorelli E, Minotti G (2007) Doxorubicin degradation in cardiomyocytes. J Pharmacol Exp Ther 322:408–419

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez RJ, Tarloff JB (2004) Expression and activities of several drug-metabolizing enzymes in LLC-PK1 cells. Toxicol In Vitro 18:887–894

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH grants GM62883, AI52663, NS39178, ES07033, and HL56548. ELW is a recipient of the NIH Pharmaceutical Sciences Training Grant (GM07750), and the William E. Bradley Fellowship in Pharmaceutics. Sequencing work was supported by the University School of Pharmacy DNA Sequencing and Gene Analysis Center. RJYH is also supported by the Milo Gibaldi Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Y. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodahl, E.L., Crouthamel, M.H., Bui, T. et al. MDR1 (ABCB1) G1199A (Ser400Asn) polymorphism alters transepithelial permeability and sensitivity to anticancer agents. Cancer Chemother Pharmacol 64, 183–188 (2009). https://doi.org/10.1007/s00280-008-0906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0906-4

Keywords

Navigation