Skip to main content
Log in

The cementless Bicontact® stem in a prospective dual-energy X-ray absorptiometry study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The cementless Bicontact® total hip arthroplasty (THA) system (AESCULAP AG, Tuttlingen, Germany) was introduced in 1986/1987 and has been in successful clinical use in an unaltered form up to today. Although good long-term results with the Bicontact® stem have been published, it is questionable whether the implant provides the criteria for a state-of-the-art stem regarding proximal bone stock preservation. The purpose of the study was to monitor the periprosthetic bone mineral density (BMD) in a prospective two-year follow-up dual-energy X-ray absorptiometry (DEXA) study.

Methods

After power analysis, a consecutive series of 25 patients with unilateral Bicontact® stem implantation was examined clinically and underwent DEXA examinations. Scans of seven regions of interest were taken preoperatively and at one week, six months, and one and two years.

Results

One patient required stem revision due to a deep infection. The Harris Hip Score increased significantly by 44 points. The most significant bone loss was observed in the calcar region (R7) in the first six months (−19.2 %). It recovered in the following 18 months to −8.5 %. The BMD in the greater trochanter dropped significantly after six months and remained stable at this level. BMD exceeded baseline values in distal regions and even more in the lesser trochanter region after two years.

Conclusions

We conclude that the Bicontact® stem provides adequate proximal bone stock preservation. We observed some signs of stress shielding at the tip of the stem, which is inevitable to some degree in THA with cementless straight stems. However, in this prospective DEXA investigation, we showed that proximal off-loading does not occur after THA with the Bicontact® system. Thus, we believe that this stem is still a state-of-the-art implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ochs U, Eingartner C, Volkmann R et al (2007) Prospective long-term follow-up of the cementless bicontact hip stem with plasmapore coating. Z Orthop Unfall 145(Suppl 1):S3–S8

    PubMed  Google Scholar 

  2. Eingartner C, Heigele T, Dieter J et al (2003) Long-term results with the BiCONTACT system–aspects to investigate and to learn from. Int Orthop 27(Suppl 1):S11–S15

    PubMed  Google Scholar 

  3. Brodner W, Bitzan P, Lomoschitz F et al (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg Br 86:20–26

    PubMed  CAS  Google Scholar 

  4. Swamy G, Pace A, Quah C, Howard P (2012) The Bicontact cementless primary total hip arthroplasty: long-term results. Int Orthop 36:915–920

    Article  PubMed  Google Scholar 

  5. Lerch M, von der Haar-Tran A, Windhagen H et al (2012) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36:533–538

    Article  PubMed  Google Scholar 

  6. Sabo D, Reiter A, Simank HG et al (1998) Periprosthetic mineralization around cementless total hip endoprosthesis: longitudinal study and cross-sectional study on titanium threaded acetabular cup and cementless Spotorno stem with DEXA. Calcif Tissue Int 62:177–182

    Article  PubMed  CAS  Google Scholar 

  7. Stukenborg-Colsman CM, von der Haar-Tran A, Windhagen H et al (2012) Bone remodelling around a cementless straight THA stem: a prospective dual-energy X-Ray absorptiometry study. Hip Int 39:2544–2558

    Google Scholar 

  8. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    Google Scholar 

  9. Cohen B, Rushton N (1995) Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J Bone Joint Surg Br 77:479–483

    PubMed  CAS  Google Scholar 

  10. Martini F, Lebherz C, Mayer F et al (2000) Precision of the measurements of periprosthetic bone mineral density in hips with a custom-made femoral stem. J Bone Joint Surg Br 82:1065–1071

    Article  PubMed  CAS  Google Scholar 

  11. Mortimer ES, Rosenthall L, Paterson I, Bobyn JD (1996) Effect of rotation on periprosthetic bone mineral measurements in a hip phantom. Clin Orthop Relat Res 324:269–274

    Google Scholar 

  12. Wroblewski BM, Siney PD, Fleming PA (2009) Charnley low-frictional torque arthroplasty: follow-up for 30 to 40 years. J Bone Joint Surg Br 91:447–450

    PubMed  CAS  Google Scholar 

  13. Muller ME (1992) Lessons of 30 years of total hip arthroplasty. Clin Orthop Relat Res 274:12–21

  14. Bettin D, Greitemann B, Polster J, Schulte-Eistrup S (1995) Long term results of uncemented Judet hip endoprostheses. Int Orthop 19:144–150

    Article  PubMed  CAS  Google Scholar 

  15. Zweymuller K, Semlitsch M (1982) Concept and material properties of a cementless hip prosthesis system with Al2O3 ceramic ball heads and wrought Ti-6Al-4 V stems. Arch Orthop Trauma Surg 100:229–236

    Article  PubMed  CAS  Google Scholar 

  16. Spotorno L, Schenk RK, Dietschi C et al (1987) Personal experiences with uncemented prostheses. Orthopade 16:225–238

    PubMed  CAS  Google Scholar 

  17. Weller S (2007) The bicontact hip arthroplasty system. Z Orthop Unfall 145(Suppl 1):S1–S2

    PubMed  Google Scholar 

  18. Effenberger H, Imhof M, Witzel U, Rehart S (2005) Cementless stems of the hip. Current status. Orthopade 34:477–500

    Article  PubMed  CAS  Google Scholar 

  19. Australian Orthopaedic Association National Joint Replacement Registry (2012) Annual Report. Adelaide: AOA; 2011. http://www.dmac.adelaide.edu.au/aoanjrr/documents/AnnualReports2011/AnnualReport_2011_WebVersion.pdf

  20. National Joint Registry for England and Wales (2011) 8th Annual Report. http://www.njrcentre.org.uk/NjrCentre/Portals/0/Documents/NJR%208th%20Annual%20Report%202011.pdf

  21. Albanese CV, Rendine M, De Palma F et al (2006) Bone remodelling in THA: A comparative DXA scan study between conventional implants and a new stemless femoral component. A preliminary report Hip Int 16(Suppl 3):9–15

    Google Scholar 

  22. Panisello JJ, Herrero L, Herrera A et al (2006) Bone remodelling after total hip arthroplasty using an uncemented anatomic femoral stem: a three-year prospective study using bone densitometry. J Orthop Surg (Hong Kong) 14:32–37

    CAS  Google Scholar 

  23. Aldinger PR, Sabo D, Pritsch M et al (2003) Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA. Calcif Tissue Int 73:115–121

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi S, Saito N, Horiuchi H et al (2000) Poor bone quality or hip structure as risk factors affecting survival of total-hip arthroplasty. Lancet 355:1499–1504

    Article  PubMed  CAS  Google Scholar 

  25. Bobyn JD, Mortimer ES, Glassman AH, et al. (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 274:79–96

    Google Scholar 

  26. Munting E, Smitz P, Van SN et al (1997) Effect of a stemless femoral implant for total hip arthroplasty on the bone mineral density of the proximal femur. A prospective longitudinal study. J Arthroplasty 12:373–379

    Article  PubMed  CAS  Google Scholar 

  27. Rahmy AI, Gosens T, Blake GM et al (2004) Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos Int 15:281–289

    Article  PubMed  CAS  Google Scholar 

  28. Katano H (2007) Periprosthetic bone mineral density in Bicontact SD stem. Five to ten years follow-up. In: Weller S, Braun A, Eingartner C, Maurer F, Weise K, Winter E, Volkmann R (eds) The Bicontact hip arthroplasty system 1987–2007. Tübingen, Georg Thieme Verlag, pp 63–69

    Google Scholar 

  29. Boden HS, Skoldenberg OG, Salemyr MO et al (2006) Continuous bone loss around a tapered uncemented femoral stem: a long-term evaluation with DEXA. Acta Orthop 77:877–885

    Article  PubMed  Google Scholar 

  30. Korovessis P, Droutsas P, Piperos G et al (1997) Course of bone mineral content changes around cementless Zweymueller total hip arthroplasty. A 4-year follow-up study. Arch Orthop Trauma Surg 116:60–65

    Article  PubMed  CAS  Google Scholar 

  31. Roth A, Richartz G, Sander K et al (2005) Periprosthetic bone loss after total hip endoprosthesis. Dependence on the type of prosthesis and preoperative bone configuration. Orthopade 34:334–344

    Article  PubMed  CAS  Google Scholar 

  32. Skoldenberg OG, Boden HS, Salemyr MO et al (2006) Periprosthetic proximal bone loss after uncemented hip arthroplasty is related to stem size: DXA measurements in 138 patients followed for 2–7 years. Acta Orthop 77:386–392

    Article  PubMed  Google Scholar 

  33. Albanese CV, Santori FS, Pavan L et al (2009) Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems: 37 patients followed for 3 years. Acta Orthop 80:291–297

    Article  PubMed  Google Scholar 

  34. Falez F, Casella F, Panegrossi G et al (2008) Perspectives on metaphyseal conservative stems. J Orthop Traumatol 9:49–54

    Article  PubMed  CAS  Google Scholar 

  35. Braun A, Papp J, Reiter A (2003) The periprosthetic bone remodelling process–signs of vital bone reaction. Int Orthop 27(Suppl 1):S7–S10

    PubMed  Google Scholar 

  36. Reiter A, Gellrich JC, Bachmann J, Braun A (2003) Changes of periprosthetic bone mineral density in cementless bicontact stem implantation; influence of different parameters–a prospective 4-year follow-up. Z Orthop Ihre Grenzgeb 141:283–288

    Article  PubMed  CAS  Google Scholar 

  37. Sano K, Ito K, Yamamoto K (2008) Changes of bone mineral density after cementless total hip arthroplasty with two different stems. Int Orthop 32:167–172

    Article  PubMed  Google Scholar 

  38. Ten Broeke RH, Hendrickx RP, Leffers P et al (2012) Randomised trial comparing bone remodelling around two uncemented stems using modified Gruen zones. Hip Int 22:41–49

    Article  PubMed  Google Scholar 

  39. Martin RB (1972) The effects of geometric feedback in the development of osteoporosis. J Biomech 5:447–455

    Article  PubMed  CAS  Google Scholar 

  40. Nishii T, Sugano N, Masuhara K, et al. (1997) Longitudinal evaluation of time related bone remodeling after cementless total hip arthroplasty. Clin Orthop Relat Res 339:121–131

    Google Scholar 

Download references

Acknowledgements

The study was undertaken in the subproject D6 of the Collaborative Research Center 599 “Sustainable degradable and permanent implants out of metallic and ceramic materials”. The authors thank the German Research foundation (DFG) for the financial support.

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Lerch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerch, M., Kurtz, A., Windhagen, H. et al. The cementless Bicontact® stem in a prospective dual-energy X-ray absorptiometry study. International Orthopaedics (SICOT) 36, 2211–2217 (2012). https://doi.org/10.1007/s00264-012-1616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1616-4

Keywords

Navigation