Skip to main content

Advertisement

Log in

Bortezomib pre-treatment prolongs interferon-alpha-induced STAT1 phosphorylation in melanoma cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bortezomib is a proteasome inhibitor that can synergize with interferon-alpha (IFN-α) to induce apoptosis in melanoma cells in vitro and inhibit tumor growth in vivo. We hypothesized that proteasome inhibition may be an effective means to sensitize melanoma cells to the direct effects of IFN-α. Pre-treatment of human melanoma cells with bortezomib led to significantly increased transcription of interferon-stimulated genes as determined by real-time PCR. Flow cytometric and immunoblot analyses indicated that the enhanced direct actions of IFN-α on melanoma cells were the result of prolonged phosphorylation of STAT1 (P-STAT1) on both the Tyrosine701 and Serine727 residues. In contrast, the enhanced IFN-α-induced P-STAT1 was not observed in peripheral blood mononuclear cells that were pre-treated with bortezomib. These data suggest that proteasome inhibition represents a mechanism to enhance the direct effects of IFN-α on melanoma cells thereby complementing its immunostimulatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Cancer Society (2007) Cancer facts and figures for 2006. American Cancer Society, Atlanta

  2. Kabbarah O, Chin L (2005) Revealing the genomic heterogeneity of melanoma. Cancer Cell 8(6):439–441

    Article  PubMed  CAS  Google Scholar 

  3. Belardelli FM, Ferrantini E, Proietti et al (2002) Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13(2):119–134

    Article  PubMed  CAS  Google Scholar 

  4. Gogas H, Ioannovich J, Dafni U et al (2006) Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354(7):709–718

    Article  PubMed  CAS  Google Scholar 

  5. Lesinski GB, Anghelina M, Zimmerer J et al (2003) The anti-tumor effects of interferon-alpha are abrogated in a STAT1-deficient mouse. J Clin Invest 112(2):170–180

    PubMed  CAS  Google Scholar 

  6. Moschos SJ, Edington HD, Land SR et al (2006) Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J Clin Oncol 24(19):3164–3171

    Article  PubMed  CAS  Google Scholar 

  7. Levy DE, Gilliland DG (2000) Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene 19(21):2505–2510

    Article  PubMed  CAS  Google Scholar 

  8. Pansky A, Hildebrand P, Fasler-Kan E et al (2000) Defective Jak-STAT signal transduction pathway in melanoma cells resistant to growth inhibition by interferon-alpha. Int J Cancer 85(5):720–725

    Article  PubMed  CAS  Google Scholar 

  9. Thyrell L, Erickson S, Zhivotovsky B et al (2002) Mechanisms of interferon-alpha induced apoptosis in malignant cells. Oncogene 21(8):1251–1262

    Article  PubMed  CAS  Google Scholar 

  10. Jackson DP, Watling D, Rogers NC et al (2003) The JAK/STAT pathway is not sufficient to sustain the antiproliferative response in an interferon-resistant human melanoma cell line. Melanoma Res 13(3):219–229

    Article  PubMed  CAS  Google Scholar 

  11. Lesinski GB, Trefry J, Brasdovich M et al (2007) Melanoma cells exhibit variable signal transducer and activator of transcription 1 phosphorylation and a reduced response to IFN-alpha compared with immune effector cells. Clin Cancer Res 13(17):5010–5019

    Article  PubMed  CAS  Google Scholar 

  12. Lesinski GB, Raig ET, Guenterberg K et al (2008) IFN-alpha and bortezomib overcome Bcl-2 and Mcl-1 overexpression in melanoma cells by stimulating the extrinsic pathway of apoptosis. Cancer Res 68(20):8351–8360

    Article  PubMed  CAS  Google Scholar 

  13. Vermes I, Haanen C, Steffens-Nakken H et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51

    Article  PubMed  CAS  Google Scholar 

  14. Kramer C (1956) Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12:309–310

    Article  Google Scholar 

  15. Gollob JA, Sciambi CJ, Huang Z et al (2005) Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-gamma. Cancer Res 65(19):8869–8877

    Article  PubMed  CAS  Google Scholar 

  16. Pamment J, Ramsay E, Kelleher M et al (2002) Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene 21(51):7776–7785

    Article  PubMed  CAS  Google Scholar 

  17. Caraglia M, Vitale G, Marra M et al (2004) Alpha-interferon and its effects on signalling pathways within cells. Curr Protein Pept Sci 5(6):475–485

    Article  PubMed  CAS  Google Scholar 

  18. Chawla-Sarkar M, Lindner DJ, Liu YF et al (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8(3):237–249

    Article  PubMed  CAS  Google Scholar 

  19. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360

    Article  PubMed  CAS  Google Scholar 

  20. Hamilton AL, Eder JP, Pavlick AC et al (2005) Proteasome inhibition with bortezomib (PS-341): a phase I study with pharmacodynamic end points using a day 1 and day 4 schedule in a 14-day cycle. J Clin Oncol 23(25):6107–6116

    Article  PubMed  CAS  Google Scholar 

  21. Armeanu S, Krusch M, Baltz KM et al (2008) Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res 14(11):3520–3528

    Article  PubMed  CAS  Google Scholar 

  22. Voortman J, Resende TP, Abou El Hassan MA et al (2007) TRAIL therapy in non-small cell lung cancer cells: sensitization to death receptor-mediated apoptosis by proteasome inhibitor bortezomib. Mol Cancer Ther 6(7):2103–2112

    Article  PubMed  CAS  Google Scholar 

  23. Papageorgiou A, Kamat A, Benedict WF et al (2006) Combination therapy with IFN-alpha plus bortezomib induces apoptosis and inhibits angiogenesis in human bladder cancer cells. Mol Cancer Ther 5(12):3032–3041

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ohio State University Comprehensive Cancer Center Analytical Cytometry and Nucleic Acid Shared Resources. The Harry J. Lloyd Charitable Trust, The Melanoma Research Foundation, The Valvano Foundation for Cancer Research Award (to G.B. Lesinski), National Institutes of Health (NIH) Grants CA84402, K24 CA93670 (to W.E. Carson), K22 CA134551 (to G.B. Lesinski), P30-CA16058, P01-CA95426 (to M.A. Caligiuri), and Millennium Pharmaceuticals, Inc., and Johnson & Johnson Pharmaceutical Research & Development, L.L.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Carson III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesinski, G.B., Benninger, K., Kreiner, M. et al. Bortezomib pre-treatment prolongs interferon-alpha-induced STAT1 phosphorylation in melanoma cells. Cancer Immunol Immunother 58, 2031–2037 (2009). https://doi.org/10.1007/s00262-009-0710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0710-y

Keywords

Navigation