Skip to main content

Advertisement

Log in

Immune enhancement and anti-tumour activity of IL-23

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapy, including the use of cytokines and/or modified tumour cells immune stimulatory cytokines, can enhance the host anti-tumour immune responses. Interleukin-23 (IL-23) is a relative novel cytokine, which consists of a heterodimer of the IL-12p40 subunit and a novel p19 subunit. IL-23 has biological activities similar to but distinct from IL-12. IL-23 can enhance the proliferation of memory T cells and the production of IFN-γ, IL-12 and TNF-α from activated T cells. IL-23 activates macrophages to produce TNF-α and nitric oxide. IL-23 can also act directly on dendritic cells and possesses potent anti-tumour and anti-metastatic activity in murine models of cancer. IL-23 can also induce a lower level of IFN-γ production compared with that induced by IL-12. This may make IL-23 an alternative and safer therapeutic agent for cancer, as IL-12 administration can lead to severe toxic side effects because of the extremely high levels of IFN-γ it induces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lotze MT, Chang AE, Seipp CA, Simpson C, Vetto JT, Rosenberg SA (1986) High-dose recombinant interleukin-2 in the treatment of patients with disseminated cancer response, treatment-related morbidity and histological finding. JAMA 256:3117–3124

    Article  PubMed  CAS  Google Scholar 

  2. Pizza G, Viaz D, Devince C, Vichi-Pascuuchi JM, Busutti L, Bergami T (1988) Intralymphatic administration of interleukin-2 (IL-2) in cancer patients: a pilot study. Cancer Res 7:46–48

    Google Scholar 

  3. Sama G, Collins J, Figlin R, Robertson P, Altrock B, Abels R (1990) A pilot study of intralymphatic interleukin-2 II clinical and biological effects. J Biol Response Modif 9:81–86

    Google Scholar 

  4. Zinzani PL, Lauria F, Salvucci M, Rondelli D, Raspadori D, Bendandi M, Magagnoli M, Tura S (1997) Hairy-cell leukemia and alpha-interferon treatment: long-term responders. Hematoligica 88:152–155

    Google Scholar 

  5. Ozer H, Wiernik PH, Giles F, Tendler C (1998) Recombinant interferon-alpha therapy in patients with follicular lymphoma. Cancer 82:1821–1830

    Article  PubMed  CAS  Google Scholar 

  6. Motzer RJ, Rakhit A, Schqartz LH, Olencki T, Malone TM, Sandstrom K, Nadeau R, Parmar H, Bukowski R (1998) Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res 4:1183–1191

    PubMed  CAS  Google Scholar 

  7. Robertson MJ, Cameron C, Atkins MM, Gordon MS, Lotze MT, Sherman ML, Ritz J (1999) Immunological effects of interleukin 12 administered by bolus intravenous injection to patients with cancer. Clin Cancer Res 5:9–16

    PubMed  CAS  Google Scholar 

  8. Gansbacher B, Zier K, Daniels B, Cronin K, Bannedi R, Gilboa E (1990) Interleukin-2 gene transfer into tumour cells abrogates tumourigenicity and induce protective immunity, J Exp Med 172:1217–1223

    Article  PubMed  CAS  Google Scholar 

  9. Karp SE, Farber A, Salo JC, Hwu P, Jaffe G, Asher AL, Shiloni E, Restifo N, Mule JJ, Rosenberg SA (1993) Cytokine secretion by genetically modified non-immunogenic murine fibrosarcoma. Tumour inhibition by IL-2 but not tumour necrosis factor. J Immunol 150:896–908

    PubMed  CAS  Google Scholar 

  10. Matsubara H, Koide Y, Sugaya M, Gunji Y, Asano T, Ochiai T, Takeganak, Sakiyama S, Tagawa M (1998) Antitumour responses of genetically engineered IL-2 expression to human esophageal carcinoma cells in mature T cell-defective condition. Int J Cancer 53:471–477

    Google Scholar 

  11. Golumbek PT, Lazenby A, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM (1991) Treatment of established renal cancer by tumour cells engineered to secrete interleukin-4. Science 254:713–716

    Article  PubMed  CAS  Google Scholar 

  12. Sturlan S, Beinhauer BG, Oberhuber G, Huang L, Aasen AO, Roay MA (2002) In vivo gene transfer of murine interleukin-4 inhibits colon26-mediated cancer cachexia in mice. Anticancer Res 22:2547–2554

    PubMed  CAS  Google Scholar 

  13. Porgador A, Tzehoval E, Katz A, Vadai E, Revel M, Feldman M, Eisenbach L (1992) Interleukin 6 gene transfection into Lewis lung carcinoma tumour cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res 52:3679–3686

    PubMed  CAS  Google Scholar 

  14. Cao X, Wang Q, Ju DW, Tao Q, Wang J (1999) Efficient induction of local and systemic antitumour immune response by liposome-mediated intratumoural co-transfer of interleukin-2 gene and interleukin-6 gene. J Exp Clin Cancer Res 18:191–200

    PubMed  CAS  Google Scholar 

  15. Chen L, Chen D, Block E, O’Donnell M, Kufe DW, Clinton SK (1997) Eradication of murine bladder carcinoma by intratumour injection of a bicistronic adenoviral vector carrying cDNAs for the IL-12 heterodimer and its inhibition by the IL-12 p40 subunit homodimer. J Immunol 159:351–359

    PubMed  CAS  Google Scholar 

  16. Satoh Y, Esche C, Gambotto A, Shurin GV, Yurkovetsky ZR, Robbins PD, Watkins SC, Todo S, Herberman RB, Lotze MT, Shurin MR (2002) Local administration of IL-12-transfected dendritic cells induces antitumour immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2:337–349

    Article  PubMed  CAS  Google Scholar 

  17. Zhang R, DeGroot LJ (2003) Gene therapy of a rat follicular thyroid carcinoma model with adenoviral vectors transducing murine interleukin-12. Endocrinology 144:1393–1398

    Article  PubMed  CAS  Google Scholar 

  18. Tasaki K, Yoshida Y, Miyauchi M, Maeda T, Tagenaga K, Kouzu T, Asano T, Ochiai T, Sakiyamna S, Tagawa M (2000) Transduction of murine colon carcinoma cells with interleukin-15 gene induces antitumour effects in immunocompetent and immunocompromised hosts. Cancer Gene Ther 7:255–261

    Article  PubMed  CAS  Google Scholar 

  19. Yoshida Y, Tasaki K, Miyauchi M, Narita M, Takenaga K, Yamamoto H, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2000) Impaired tumourigenicity of human pancreatic cancer cells retrovirally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Ther 7:324–331

    Article  PubMed  CAS  Google Scholar 

  20. Yoshimura K, Haxama S, Iixuka N, Yoshino S, Yamamoto K, Muraguchi M, Ohmoto Y, Noma T, Oka M (2001) Successful immunogene therapy using colon cancer cells (colon26) transfected with plasmid vector containing mature interleukin-18 cDNA and the Igkappa leader sequence. Cancer Gene Ther 8:9–6

    Article  PubMed  CAS  Google Scholar 

  21. Nagai H, Hara I, Horikawa T, Oka M, Kamidono S, Ichihashi M (2002) Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumour growth through inhibition of tumour vessel formation. J Invest Dermatol 119:541–548

    Article  PubMed  CAS  Google Scholar 

  22. Ugai S, Shimozato O, Kawamura K, Wang YQ, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2003) Expression of the interleukin-21 gene in murine colon carcinoma cells generates systemic immunity in the inoculated hosts. Cancer Gene Ther 10:187–192

    Article  PubMed  CAS  Google Scholar 

  23. Vanhaesebroeck B, Mareel M, Van Roy F, Grooten J, Fiers W (1991) Expression of the tumour necrosis factor gene in tumour cells correlates with reduced tumourigenicity and reduced invasiveness in vivo. Cancer Res 51:2229–2238

    PubMed  CAS  Google Scholar 

  24. Lasek W, Maxhiewicz A, Czajka A, Switaj T, Golb J, Wiznerowicz M, Korczak-Kawalska G, Bakowiec-Iskra EZ, Gryska K, Ixycki D, Jakobisiak M (2000) Antirumor effects of the combination therapy with TNF-alpha gene-modified tumour cells and interleukin 12 in a melanoma model in mice. Cancer Gene Ther 7:1581–1590

    Article  PubMed  CAS  Google Scholar 

  25. Ohashi M, Yoshida K, Kushida M, Miura Y, Ohnami S, Ikaraki Y, Kitade Y, Yoshida T, Aoki K (2005) Adenovirus-mediated interferon alpha gene transfer induces regional direct cytotoxicity and possible systemic immunity against pancreatic cancer. Br J Cancer 93:441–449

    Article  PubMed  CAS  Google Scholar 

  26. Wilderman MJ, Sun J, Jassar AS, Kapoor V, Khan M, Vachani A, Suzuki E, Kinniry PA, Sterman DH, Ksiser LR, Albelda SM (2005) Intrapulmonary IFN-beta gene therapy using an adenoviral vector is highly effective in a murine orthotopic model of bronchogenic adenocarcinoma of the lung. Cancer Res 65:8379–8387

    Article  PubMed  CAS  Google Scholar 

  27. Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E (1990) Retroviral vector-mediated gamma-interferon gene transfer into tumour cells genetates potent and long lasting antitumor immunity. Cancer Res 50:713–716

    Google Scholar 

  28. Dummer R, Hassel JC, Fellenberg F, Eichmuller S, Maier T, Slos P, Acres B, Bleuzen P, Bataille V, Squiban P, Burg G, Urosevic M (2004) Adenovirus-mediated intralesional interferon-gamma gene transfer induces tumour regression in cutaneous lymphomas. Blood 104:1631–1638

    Article  PubMed  CAS  Google Scholar 

  29. Ju DW, Cao X, Acres B (1997) Intratumour injection of GM-CSF gene encoded recombinant vaccinia virus elicits antitumour response in a mixture melanoma model. Cancer Gene Ther 4:139–144

    PubMed  CAS  Google Scholar 

  30. Hogge GS, Burkholder JK, Culp J, Albertini MR, Dubielzig RR, Yang NS, MacEwen EG (1999) Preclinical development of human granulocyte-macrophage colony-stimulating factor-transfected melanoma cell vaccine using established canine cell lines and normal dogs. Cancer Gene Ther 6:26–36

    Article  PubMed  CAS  Google Scholar 

  31. Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–531

    Article  PubMed  CAS  Google Scholar 

  32. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu YJ, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  PubMed  CAS  Google Scholar 

  33. Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D (2004) Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J 18:1318–1320

    PubMed  CAS  Google Scholar 

  34. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Sttenhoff TH (2004) Human IL-23-producing type1 macrophages promote but IL-10-producing type2 macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci USA 101:4560–4565

    Article  PubMed  CAS  Google Scholar 

  35. Pirhonen J, Matikainen S, Julkunen I (2002) Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J Immunol 169:5673–5678

    PubMed  CAS  Google Scholar 

  36. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M, Krueger JG (2004) Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 199:125–130

    Article  PubMed  CAS  Google Scholar 

  37. Chua AO, Chizzonite R, Desai BB, Truitt TP, Nunes P, Minetti LT, Warrier RR, Presky DH, Levine JF, Gately MK et al (1994) Expression cloning of a human IL-12 receptor component: a new member of the cytokine receptor superfamily with strong homology to gp130. J Immunol 153:128–136

    PubMed  CAS  Google Scholar 

  38. Chua AO, Wilkinson VL, Presky DH, Gubler U (1995) Cloning and characterization of a mouse IL-12 receptor-beta component. J Immunol 155:4286–4294

    PubMed  CAS  Google Scholar 

  39. Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, Wu CY, Gately MK, Gubler U (1996) A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA 93:14002–14007

    Article  PubMed  CAS  Google Scholar 

  40. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal Malefyt R, Moore KW (2002) A receptor for the heterodimeric cytokine IL-23 composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708

    PubMed  CAS  Google Scholar 

  41. Bellassonna ML, Renauld JC, Bianchi R, Vacca G, Fallarino F, Orabona C, Fioretti MC, Grohmann U, Puccetti P (2002) IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol 168:5448–5454

    Google Scholar 

  42. Bastos KRB, Marinho CRF, Barboza R, Russo M, Ălvarez JM, D’Império Lima MR (2004) What kind of message does IL-12/IL-23 bring to macrophages and dendritic cells? Microbes Infect 6:630–636

    Article  PubMed  CAS  Google Scholar 

  43. Cau DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  Google Scholar 

  44. Wiekowski MT, Leach MW, Evans EW, Sullivanl L, Chen SC, Vassileva G, Bazan JF, Gorman DM, Kastelein RA, Narula S, Lira SA (2001) Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility and premature death. J Immunol 166:7563–7570

    PubMed  CAS  Google Scholar 

  45. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of Interleukin-17. J Biol Chem 278:1910–1914

    Article  PubMed  CAS  Google Scholar 

  46. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–105

    Article  PubMed  CAS  Google Scholar 

  47. Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, Roffler SR, Chiang BL, Lee CN, Wu CW, Tao MH (2003) Antitumour and antimetastatic activity of IL-23. J Immunol 171:600–607

    PubMed  CAS  Google Scholar 

  48. Wang YQ, Ugai S, Shimozato O, Yu L, Kawamura K, Yamamoto H, Yamaguchi T, Saisho H, Tagawa M (2003) Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer 105:820–824

    Article  PubMed  CAS  Google Scholar 

  49. Ugai S, Shimozato S, Yu L, Wang YQ, Kawamura K, Yamamoto H, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2003) Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and -independent antitumour effects. Cancer Gene Ther 10:771–778

    Article  PubMed  CAS  Google Scholar 

  50. Shan BE, Yu L, Shimozato O, Li QX, Tagawa M (2004) Expression of interleukin-21 and -23 in human esophageal tumours produced antitumour effects in nude mice. Anticancer Res 24:79–82

    PubMed  CAS  Google Scholar 

  51. Liebau C, Rosesl C, Schmidf S, Karreman C, Prisack JB, Bojar H, Merk H, Wolfram N, Baltzer AW (2004) Immunotherapy by gene transfer with plasmids encoding IL-12/IL18 is superior to IL-23/IL-18 gene transfer in a rat osteosarcoma model. Anticancer Res 24:2861–2867

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-En Shan.

Additional information

This article is a symposium paper from the Annual Meeting of the “International Society for Cell and Gene Therapy of Cancer”, held in Shenzhen, China, on 9–11 December 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, JS., Shan, BE. Immune enhancement and anti-tumour activity of IL-23. Cancer Immunol Immunother 55, 1426–1431 (2006). https://doi.org/10.1007/s00262-006-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0171-5

Keywords

Navigation