Skip to main content

Advertisement

Log in

1,25-Dihydroxy vitamin D and coronary microvascular function

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The active form of vitamin D (1,25(OH)2D) contributes to blood flow regulation in skeletal muscle. The aim of the present study was to determine whether this hormone also modulates coronary physiology, and thus whether abnormalities in its bioavailability contribute to excess cardiovascular risk in patients with disorders of mineral metabolism.

Methods

As a clinical model of the wide variability in 1,25(OH)2D bioavailability, we studied 23 patients (62 ± 8 years) with suspected primary hyperparathyroidism referred for myocardial perfusion imaging because of atypical chest pain and at least one cardiovascular risk factor. Dipyridamole and baseline myocardial blood flow indexes were assessed on G-SPECT imaging of 99mTc-tetrofosmin, with normalization of the myocardial count rate to the corresponding first-transit counts in the pulmonary artery. Coronary flow reserve (CFR) was defined as the ratio between dipyridamole and baseline myocardial blood flow indexes. In all patients, parathyroid hormone, 25-hydroxy vitamin D (25(OH)D) and 1,25(OH)2D serum levels were determined.

Results

Primary hyperparathyroidism was eventually diagnosed in 15 of the 23 patients. The mean 25(OH)D concentration was relatively low (21 ± 10 ng/mL) while the concentrations of 1,25(OH)2D varied widely but within the normal range (mean 95 ± 61 pmol/L). No patient showed reversible perfusion defects on G-SPECT. CFR was not correlated with either the serum concentration of 25(OH)D nor that of parathyroid hormone, but was strictly correlated with the serum level of 1,25(OH)2D (R = 0.8, p < 0.01). Moreover, patients with a 1,25(OH)2D concentration below the median value (86 pmol/L) had markedly lower CFR than the other patients (1.48 ± 0.40 vs. 2.51 ± 0.63, respectively; p < 0.001).

Conclusion

Bioavailable 1,25(OH)2D modulates coronary microvascular function. This effect might contribute to the high cardiovascular risk of conditions characterized by chronic reduction in bioavailability of this hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lavie CJ, Lee JH, MIlani RV. Vitamin D and cardiovascular disease. J Am Coll Cardiol. 2011;58:1547–56.

    Article  PubMed  CAS  Google Scholar 

  2. Holick MF. Vitamin D, for health and in chronic kidney disease. Semin Dial. 2005;18:266–75.

    Article  PubMed  Google Scholar 

  3. Anderson JL, May HT, Horne BD, Bair TL, Hall NL, Carlquist JF, et al.; Intermountain Heart Collaborative (IHC) Study Group. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol. 2010;106:963–8.

    Article  PubMed  CAS  Google Scholar 

  4. Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152:307–14.

    PubMed  Google Scholar 

  5. Pilz S, Dobnig H, Fischer JE, Wellnitz B, Seelhorst U, Boehm BO, et al. Low vitamin D levels predict stroke in patients referred to coronary angiography. Stroke. 2008;39:2611–3.

    Article  PubMed  CAS  Google Scholar 

  6. Deo R, Katz R, Shlipak MG, Sotoodehnia N, Psaty BM, Sarnak MJ, et al. Vitamin D, parathyroid hormone, and sudden cardiac death: results from the cardiovascular health study. Hypertension. 2011;58:1021–8.

    Article  PubMed  CAS  Google Scholar 

  7. Borges AC, Feres T, Vianna LM, Paiva TB. Effect of cholecalciferol treatment on the relaxant responses of spontaneously hypertensive rat arteries to acetylcholine. Hypertension. 1999;34:897–901.

    Article  PubMed  CAS  Google Scholar 

  8. Artham SM, Lavie CJ, Milani RV, Patel DA, Verma A, Ventura HO. Clinical impact of left ventricular hypertrophy and implications for regression. Prog Cardiovasc Dis. 2009;52:153–67.

    Article  PubMed  Google Scholar 

  9. Duprez D, de Buyzere M, de Backer T, Clement D. Relationship between vitamin D3 and the peripheral circulation in moderate arterial primary hypertension. Blood Press. 1994;3:389–93.

    Article  PubMed  CAS  Google Scholar 

  10. Molinari C, Uberti F, Grossini E, Vacca G, Carda S, Invernizzi M, et al. 1α,25-Dihydroxycholecalciferol induces nitric oxide production in cultured endothelial cells. Cell Physiol Biochem. 2011;27:661–8.

    Article  PubMed  CAS  Google Scholar 

  11. Shapses SA, Manson JE. Vitamin D and prevention of cardiovascular disease and diabetes: why the evidence falls short. JAMA. 2011;305:2565–6.

    Article  PubMed  CAS  Google Scholar 

  12. Elamin MB, Nisrin O, Abu E, Fatourechi MM, Alkatib AA, Almandoz JP, et al. Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96:1931–42.

    Article  PubMed  CAS  Google Scholar 

  13. Hewison M, Zehnder D, Bland R, Stewart PM. 1alpha-Hydroxylase and the action of vitamin D. J Mol Endocrinol. 2000;25:141–8.

    Article  PubMed  CAS  Google Scholar 

  14. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Brunet P. Vascular incompetence in dialysis patients: protein-bound uremic toxins and endothelial dysfunction. Semin Dial. 2011;24:327–37.

    Article  PubMed  Google Scholar 

  15. Marini C, Giusti M, Armonino R, Ghigliotti G, Bezante G, Vera L, et al. Reduced coronary flow reserve in patients with primary hyperparathyroidism: a study by G-SPECT myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2010;37:2256–63.

    Article  PubMed  Google Scholar 

  16. Ito Y, Katoh C, Noriyasu K, Kuge Y, Furuyama H, Morita K, et al. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of [15O]H2O PET. Eur J Nucl Med Mol Imaging. 2003;30:281–7.

    Article  PubMed  CAS  Google Scholar 

  17. Taki J, Fujino S, Nakajima K, Matsunari I, Okazaki H, Saga T, et al. (99m)Tc-sestamibi retention characteristics during pharmacologic hyperemia in human myocardium: comparison with coronary flow reserve measured by Doppler flowire. J Nucl Med. 2001;42:1457–63.

    PubMed  CAS  Google Scholar 

  18. Storto G, Cirillo P, Vicario ML, Pellegrino T, Sorrentino AR, Petretta M, et al. Estimation of coronary flow reserve by Tc-99m sestamibi imaging in patients with coronary artery disease: comparison with the results of intracoronary Doppler technique. J Nucl Cardiol. 2004;11:682–8.

    Article  PubMed  Google Scholar 

  19. Storto G, Sorrentino AR, Pellegrino T, Liuzzi R, Petretta M, Cuocolo A. Assessment of coronary flow reserve by sestamibi imaging in patients with typical chest pain and normal coronary arteries. Eur J Nucl Med. 2007;34:1156–61.

    Article  Google Scholar 

  20. Marini C, Bezante G, Gandolfo P, Modonesi E, Morbelli SD, Depascale A, et al. Optimization of flow reserve measurement using SPECT technology to evaluate the determinants of coronary microvascular dysfunction in diabetes. Eur J Nucl Med Mol Imaging. 2010;37:357–67.

    Article  PubMed  Google Scholar 

  21. Daniele S, Nappi C, Acampa W, Storto G, Pellegrino T, Ricci F, et al. Incremental prognostic value of coronary flow reserve assessed with single-photon emission computed tomography. J Nucl Cardiol. 2011;18:612–9.

    Article  PubMed  Google Scholar 

  22. Hendel RC, Budoff MJ, Cardella JF, Chambers CE, Dent JM, Fitzgerald DM, et al.; American College of Cardiology (ACC); American Heart Association (AHA). ACC/AHA/ACR/ASE/ASNC/HRS/NASCI/RSNA/SAIP/SCAI/SCCT/SCMR/SIR. Key Data Elements and Definitions for Cardiac Imaging: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Cardiac Imaging). J Am Coll Cardiol. 2009;53:91–124.

    Article  PubMed  Google Scholar 

  23. Camici P, Marraccini P, Marzilli M, Lorenzoni R, Buzzigoli G, Puntoni R, et al. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. Am J Physiol. 1989;257:E309–17.

    PubMed  CAS  Google Scholar 

  24. Scragg R. Seasonality of cardiovascular disease mortality and the possible protective effect of ultra-violet radiation. Int J Epidemiol. 1981;10:337–41.

    Article  PubMed  CAS  Google Scholar 

  25. Fleck A. Latitude and ischaemic heart disease. Lancet. 1989;1:613.

    Article  PubMed  CAS  Google Scholar 

  26. Kendrick J, Targher G, Smits G, Chonchol M. 25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the third national health and nutrition examination survey. Atherosclerosis. 2009;205:255–60.

    Article  PubMed  CAS  Google Scholar 

  27. Kasuga H, Hosogane N, Matsuoka K, Mori I, Sakura Y, Shimakawa K, et al. Characterization of transgenic rats constitutively expressing vitamin D-24-hydroxylase gene. Biochem Biophys Res Commun. 2002;297:1332–8.

    Article  PubMed  CAS  Google Scholar 

  28. Shen H, Bielak FL, Ferguson JF, Streeten EA, Yerges-Armstrong LM, Liu J, et al. Association of the vitamin D metabolism gene CYP24A1 with coronary artery calcification. Arterioscler Thromb Vasc Biol. 2010;30:2648–54.

    Article  PubMed  CAS  Google Scholar 

  29. Watson KE, Abrolat ML, Malone LL, Hoeg JM, Doherty T, Detrano R, et al. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation. 1997;96:1755–60.

    Article  PubMed  CAS  Google Scholar 

  30. Young KA, Snell-Bergeon JK, Naik RG, Hokanson JE, Tarullo D, Gottlieb PA, et al. Vitamin D deficiency and coronary artery calcification in subjects with type 1 diabetes. Diabetes Care. 2011;34:454–8.

    Article  PubMed  CAS  Google Scholar 

  31. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48–55.

    Article  PubMed  CAS  Google Scholar 

  32. Kim C, Kwok Y, Heagerty P, Redberg R. Pharmacologic stress testing for coronary artery disease. Am Heart J. 2001;146:934–43.

    Article  Google Scholar 

  33. Travain MI, Wexler JP. Pharmacological stress testing. Semin Nucl Med. 1999;29:298–318.

    Article  PubMed  CAS  Google Scholar 

  34. Koleganova N, Piecha G, Ritz E, Gross ML. Calcitriol ameliorates capillary deficit and fibrosis of the heart in subtotally nephrectomized rats. Nephrol Dial Transplant. 2009;24:778–87.

    Article  PubMed  CAS  Google Scholar 

  35. Parodi O, Neglia D, Palombo C, Sambuceti G, Giorgetti A, Marabotti C, et al. Comparative effects of enalapril and verapamil on myocardial blood flow in systemic hypertension. Circulation. 1997;96:864–73.

    Article  PubMed  CAS  Google Scholar 

  36. Möser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989;256:C799–806.

    PubMed  Google Scholar 

  37. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol. 1989;256:H383–90.

    PubMed  CAS  Google Scholar 

  38. Sambuceti G, Marzilli M, Marini C, L'Abbate A. Interaction between coronary artery stenosis and coronary microcirculation in ischemic heart disease. Z Kardiol. 2000;89(IX):126–31.

    Google Scholar 

  39. Sambuceti G, Marzilli M, Mari A, Marini C, Schluter M, Testa R, et al. Coronary microcirculatory vasoconstriction is heterogeneously distributed in acutely ischemic myocardium. Am J Physiol Heart Circ Physiol. 2005;288(5):H2298–305.

    Article  PubMed  CAS  Google Scholar 

  40. Raitakari OT, Toikka JO, Laine H, Ahotupa M, Iida H, Viikari JS, et al. Reduced myocardial flow reserve relates to increased carotid intima-media thickness in healthy young men. Atherosclerosis. 2001;156:469–75.

    Article  PubMed  CAS  Google Scholar 

  41. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schäfers KP, Lüscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation. 2000;102:1233–8.

    Article  PubMed  CAS  Google Scholar 

  42. Sambuceti G, Marzullo P, Giorgetti A, Neglia D, Marzilli M, Salvadori P, et al. Global alteration in perfusion response to increasing oxygen consumption in patients with single-vessel coronary artery disease. Circulation. 1994;90:1696–705.

    Article  PubMed  CAS  Google Scholar 

  43. Scragg RK, Camargo Jr CA, Simpson R. Relation of serum 25-hydroxyvitamin D to heart rate and cardiac work (from the National Health and Nutrition Examination Surveys). Am J Cardiol. 2010;105:122–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to dr. Paolo Bruzzi for valuable assistance in the statistical analysis. The study was supported by the following public bodies: Italian Ministry of Health (Finanziamento conto capitale 2012) and by Regione Liguria (Finanziamento ricerca sanitaria 2009).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianmario Sambuceti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capitanio, S., Sambuceti, G., Giusti, M. et al. 1,25-Dihydroxy vitamin D and coronary microvascular function. Eur J Nucl Med Mol Imaging 40, 280–289 (2013). https://doi.org/10.1007/s00259-012-2271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2271-0

Keywords

Navigation