Skip to main content
Log in

An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We used experimental evolution in order to identify genes involved in the adaptation of Saccharomyces cerevisiae to the early stages of alcoholic fermentation. Evolution experiments were run for about 200 generations, in continuous culture conditions emulating the initial stages of wine fermentation. We performed whole-genome sequencing of four adapted strains from three independent evolution experiments. Mutations identified in these strains pointed to the Rsp5p-Bul1/2p ubiquitin ligase complex as the preferred evolutionary target under these experimental conditions. Rsp5p is a multifunctional enzyme able to ubiquitinate target proteins participating in different cellular processes, while Bul1p is an Rsp5p substrate adaptor specifically involved in the ubiquitin-dependent internalization of Gap1p and other plasma membrane permeases. While a loss-of-function mutation in BUL1 seems to be enough to confer a selective advantage under these assay conditions, this did not seem to be the case for RSP5 mutated strains, which required additional mutations, probably compensating for the detrimental effect of altered Rsp5p activity on essential cellular functions. The power of this experimental approach is illustrated by the identification of four independent mutants, each with a limited number of SNPs, affected within the same pathway. However, in order to obtain information relevant for a specific biotechnological process, caution must be taken in the choice of the background yeast genotype (as shown in this case for auxotrophies). In addition, the use of very stable continuous fermentation conditions might lead to the selection of a rather limited number of adaptive responses that would mask other possible targets for genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baganz F, Hayes A, Farquhar R, Butler PR, Gardner DCJ, Oliver SG (1998) Quantitative analysis of yeast gene function using competition experiments in continuous culture. Yeast 14:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Bai FY, Liang HY, Jia JH (2000) Taxonomic relationships among the taxa in the Candida guilliermondii complex, as revealed by comparative electrophoretic karyotyping. Int J Syst Evol Microbiol 50:417–422

    Article  CAS  PubMed  Google Scholar 

  • Beaudenon SL, Huacani MR, Wang G, McDonell DP, Huibregtse JM (1999) Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol 19:6972–6979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belgareh-Touzé N, Léon S, Erpapazoglou Z, Stawiecka-Mirota M, Urban-Grimal D, Haguenauer-Tsapis R (2008) Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem Soc Trans 36:791–796

    Article  PubMed  Google Scholar 

  • Cadière A, Ortiz-Julien A, Camarasa C, Dequin S (2011) Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng 13:263–271

    Article  PubMed  Google Scholar 

  • Cadière A, Aguera E, Caillé S, Ortiz-Julien A, Dequin S (2012) Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution. Food Microbiol 32:332–337

    Article  PubMed  Google Scholar 

  • Chae HZ, Kim IH, Kim K, Rhee SG (1993) Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268:16815–16821

    CAS  PubMed  Google Scholar 

  • Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X (2012) Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet 3:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen M, Stutz F, Belgareh N, Haguenauer-Tsapis R, Dargemont C (2003a) Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat Cell Biol 5:661–667

    Article  CAS  PubMed  Google Scholar 

  • Cohen M, Stutz F, Dargemont C (2003b) Deubiquitination, a new player in golgi to endoplasmic reticulum retrograde transport. J Biol Chem 278:51989–51992

    Article  CAS  PubMed  Google Scholar 

  • Conrad TM, Lewis NE, Palsson BO (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509

    Article  PubMed Central  PubMed  Google Scholar 

  • Daran-Lapujade P, Jansen MLA, Daran JM, Van Gulik W, De Winde JH, Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae: a chemostat culture study. J Biol Chem 279:9125–9138

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Bierma J, Smith MR, Poliner E, Wolfe C, Hadduck AN, Zara S, Jirikovic M, van Zee K, Penner MH, Patton-Vogt J, Bakalinsky AT (2013) Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 97:7405–7416

    Article  CAS  PubMed  Google Scholar 

  • Dunham MJ (2010) Experimental evolution in yeast: a practical guide. In: Weissman J, Guthrie C, Fink G (eds) Methods in enzymology, vol 470, Guide to yeast genetics: functional genomics, proteomics, and other systems analysis. Elsevier, London, UK, pp 487–507

    Google Scholar 

  • Dupré S, Urban-Grimal D, Haguenauer-Tsapis R (2004) Ubiquitin and endocytic internalization in yeast and animal cells. Biochim Biophys Acta 1695:89–111

    Article  PubMed  Google Scholar 

  • García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679

    Article  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Meth Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  • Haitani Y, Takagi H (2008) Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae. Genes Cells 13:105–116

    Article  CAS  PubMed  Google Scholar 

  • Hayes A, Zhang N, Wu J, Butler PR, Hauser NC, Hoheisel JD, Lim FL, Sharrocks AD, Oliver SG (2002) Hybridization array technology coupled with chemostat culture: Tools to interrogate gene expression in Saccharomyces cerevisiae. Methods 26:281–290

    Article  CAS  PubMed  Google Scholar 

  • Helliwell SB, Losko S, Kaiser CA (2001) Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153:649–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Article  CAS  PubMed  Google Scholar 

  • Hoshikawa C, Shichiri M, Nakamori S, Takagi H (2003) A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins. Proc Natl Acad Sci U S A 100:11505–11510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoskisson PA, Hobbs G (2005) Continuous culture—making a comeback? Microbiology 151:3153–3159

    Article  CAS  PubMed  Google Scholar 

  • Huxley C, Green ED, Dunham I (1990) Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6:236

    Article  CAS  PubMed  Google Scholar 

  • Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23:1972–1984

    Article  CAS  PubMed  Google Scholar 

  • Jarmoszewicz K, Łukasiak K, Riezman H, Kaminska J (2012) Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants. PLoS One 7:e39582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiménez J, Benítez T (1987) Genetic analysis of highly ethanol-tolerant wine yeasts. Curr Genet 12:421–428

    Article  Google Scholar 

  • Kaida D, Toh-e A, Kikuchi Y (2003) Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast. Biochem Biophys Res Commun 306:1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Kaliszewski P, Zoładek T (2008) The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells. Acta Biochim Pol 55:649–662

    CAS  PubMed  Google Scholar 

  • Kolkman A, Olsthoorn MMA, Heeremans CEM, Heck AJR, Slijper M (2005) Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 4:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kus B, Gajadhar A, Stanger K, Cho R, Sun W, Rouleau N, Lee T, Chan D, Wolting C, Edwards A, Bosse R, Rotin D (2005) A high throughput screen to identify substrates for the ubiquitin ligase Rsp5. J Biol Chem 280:29470–29478

    Article  CAS  PubMed  Google Scholar 

  • Kutyna DR, Varela C, Stanley GA, Borneman AR, Henschke PA, Chambers PJ (2012) Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol 93:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Landry CR, Townsend JP, Hartl DL, Cavalieri D (2006) Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 15:575–591

    Article  CAS  PubMed  Google Scholar 

  • Legras J-L, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol Lett 221:249–255

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu J, Sitaram A, Burd CG (2007) Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase. Traffic 8:1375–1384

    Article  CAS  PubMed  Google Scholar 

  • Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques 50:325–328

    PubMed Central  PubMed  Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Moreno R, Morales P, Gonzalez R, Mas A, Beltran G (2012) Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Res 12:477–485

    Article  PubMed  Google Scholar 

  • McBryde C, Gardner JM, de Barros LM, Jiranek V (2006) Generation of novel wine yeast strains by adaptive evolution. Am J Enol Vitic 57:423–430

    CAS  Google Scholar 

  • Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the yeast genetic stock center. Genetics 113:35–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mülleder M, Capuano F, Pir P, Christen S, Sauer U, Oliver SG, Ralser M (2012) A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat Biotechnol 30:1176–1178

    Article  PubMed Central  PubMed  Google Scholar 

  • Neumann S, Petfalski E, Brügger B, Grosshnas H, Wieland F, Tollervey D, Jurt E (2003) Formation and nuclear exprot of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep 4:1156–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novo M, Mangado A, Quirós M, Morales P, Salvadó Z, Gonzalez R (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the proliferative stages of wine fermentation. PLoS One 8:e74086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ossareh-Nazari B, Cohen M, Dargemont C (2010) The Rsp5 ubiquitin ligase and the AAA-ATPase Cdc48 control the ubiquitin-mediated degradation of the COPII component Sec23. Exp Cell Res 316:3351–3357

    Article  CAS  PubMed  Google Scholar 

  • Oud B, Van Maris AJA, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12:183–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce SE, Davis RW, Nislow C, Giaever G (2007) Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2:2958–2974

    Article  CAS  PubMed  Google Scholar 

  • Piggott N, Cook MA, Tyers M, Measday V (2011) Genome-wide fitness profiles reveal a requirement for autophagy during yeast fermentation. G3: 1:353–367

  • Piper MDW, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277:37001–37008

    Article  CAS  PubMed  Google Scholar 

  • Prelich G (2002) RNA Polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryotic Cell 1:153–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puig S, Pérez-Ortín JE (2000) Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast 16:139–148

    Article  CAS  PubMed  Google Scholar 

  • Querol A, Barrio E, Huerta T, Ramon D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quirós M, Martínez-Moreno R, Albiol J, Morales P, Vázquez-Lima F, Barreiro-Vázquez A, Ferrer P, Gonzalez R (2013) Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations. PLoS One 8:e71909

    Article  PubMed Central  PubMed  Google Scholar 

  • Roberg KJ, Bickel S, Rowley N, Kaiser CA (1997) Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147:1569–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soetens O, De Craene JO, André B (2001) Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276:43949–43957

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz EJ, Conrad NK, Brown DA, Corden JL (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413:327–331

    Article  CAS  PubMed  Google Scholar 

  • Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P, Santucci A (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370:35–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trotter EW, Rand JD, Vickerstaff J, Grant CM (2008) The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant. Biochem J 412:73–80

    Article  CAS  PubMed  Google Scholar 

  • Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70:3392–3400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang SA, Bai FY (2008) Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int J Syst Evol Microbiol 58:510–514

    Article  CAS  PubMed  Google Scholar 

  • Warringer J, Blomberg A (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20:53–67

    Article  CAS  PubMed  Google Scholar 

  • Wong CM, Siu KL, Jin DY (2004) Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 279:23207–23213

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhang N, Hayes A, Panoutsopoulo K, Oliver SG (2004) Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci U S A 101:3148–3153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yashiroda H, Oguchi T, Yasuda Y, Toh-E A, Kikuchi Y (1996) Bull, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. Mol Cell Biol 16:3255–3263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  CAS  PubMed  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Van 't Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Cristina Juez and Laura López for technical assistance, and Rafael Torres for advise with NGS data analysis. This work was supported by the Spanish Ministerio de Ciencia e Innovación (grants AGL2009-07327 and AGL2012-32064) and Junta de Andalucía (grant P10-AGR6544). AM was the recipient of a FPI fellowship from the Spanish Ministerio de Economía y Competitividad. MQ and MN were recipients of JAE-Doc fellowships from the Spanish National Research Council (CSIC), co-funded by the European Social Fund of the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangado, A., Tronchoni, J., Morales, P. et al. An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must. Appl Microbiol Biotechnol 99, 1273–1286 (2015). https://doi.org/10.1007/s00253-014-6126-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6126-4

Keywords

Navigation