Skip to main content
Log in

Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Klebsiella oxytoca M5al is an excellent 1,3-propanediol (1,3-PD) producer, but too much lactic acid yielded greatly lessened the fermentation efficiency for 1,3-PD. To counteract the disadvantage, four lactate deficient mutants were obtained by knocking out the ldhA gene of lactate dehydrogenase (LDH) of K. oxytoca M5al. The LDH activities of the four mutants were from 3.85 to 6.92% of the parental strain. The fed-batch fermentation of 1,3-PD by mutant LDH3, whose LDH activity is the lowest, was studied. The results showed that higher 1,3-PD concentration, productivity, and molar conversion rate from glycerol to 1,3-PD can be gained than those of the wild type strain and no lactic acid is produced under both anaerobic and microaerobic conditions. Sucrose fed during the fermentation increased the conversion and sucrose added at the beginning increased the productivity. In fed-batch fermentation with sucrose as cosubstrate under microaerobic conditions, the 1,3-PD concentration, conversion, and productivity were improved significantly to 83.56 g l−1, 0.62 mol mol−1, and 1.61 g l−1 h−1, respectively. Furthermore, 60.11 g l−1 2,3-butanediol was also formed as major byproduct in the broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbad-Andaloussi S, Amine J, Gerard P, Petitdemange H (1998) Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. J Appl Microbiol 84:515–522

    CAS  PubMed  Google Scholar 

  • Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella Pneumoniae in anaerobic continuous culture: III enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552

    CAS  PubMed  Google Scholar 

  • Biebl H (1991) Glycerol fermentation to 1,3-propanediol by butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35:701–705

    CAS  Google Scholar 

  • Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26

    CAS  PubMed  Google Scholar 

  • Biebl H, Marten S (1995) Fermentation of glycerol to 1,3-propanediol: use of cosubstrates. Appl Microbiol Biotechnol 44:15–19

    CAS  Google Scholar 

  • Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl Microbiol Biotechnol 36:592–597

    CAS  Google Scholar 

  • Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3–butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50:24–29

    CAS  PubMed  Google Scholar 

  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    CAS  PubMed  Google Scholar 

  • Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter Freundii. Appl Microbiol Biotechnol 38:453–457

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:116–125

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146

    CAS  PubMed  Google Scholar 

  • Cheng KK, Liu DH, Sun Y, Liu WB (2004) 1,3-propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnol Lett 26:911–915

    CAS  PubMed  Google Scholar 

  • Cheng KK, Liu HJ, Liu DH (2005) Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett 27:19–22

    CAS  PubMed  Google Scholar 

  • Colin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54:201–205

    CAS  PubMed  Google Scholar 

  • Colin T, Bories A, Lavigne C, Moulin G (2001) Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 43:238–243

    CAS  PubMed  Google Scholar 

  • Günel B, Yonsel S, Deckwer WD (1991) Fermentation production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3. Appl Microbiol Biotechnol 36:289–295

    Google Scholar 

  • Homann T, Tag C, Biebl H, Deckwer WD (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126

    CAS  Google Scholar 

  • Huang H, Gong CS, Tsao GT (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 98–100:687–698

    PubMed  Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86

    CAS  Google Scholar 

  • Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio Cholerae requires toxR. J Bacteriol 170:2575–2583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    CAS  PubMed  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol l57:2810–2815

    Google Scholar 

  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208

    CAS  PubMed  Google Scholar 

  • Petitdemange E, Manginot-Durr C, Abbad-Andaloussi S, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15:498–501

    CAS  Google Scholar 

  • Reimann A, Biebl H (1996) Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fed-batch culture. Feeding strategy for glycerol and ammonium. Biotechnol Lett 18:827–832

    CAS  Google Scholar 

  • Reimann A, Abbad-Andaloussi S, Biebl H, Petitdemange H (1998) 1,3-propanediol formation with product-tolerant mutants of Clostridium butyricum DSM 5431 in continuous culture: productivity, carbon and electron flow. J Appl Microbiol 84:1125–1130

    CAS  Google Scholar 

  • Saint-Amans S, Soucaille P (1995) Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glucose-glycerol mixtures. Biotechnol Lett 17:211–216

    CAS  Google Scholar 

  • Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and flow in Clostridium butyricum VPI 3266 grown on glucose–glycerol mixtures. J Bacteriol 183(5):1748–1754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol 64:98–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon BO, Zeng AP, Hibel H, Schlieker H, Posten C, Deckwer WD (1995) Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 39:107–117

    CAS  PubMed  Google Scholar 

  • Sprenger GA, Hammer GA, Johnson EA, Lin ECC (1989) Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J Gen Microbiol 135:1255–1262

    CAS  PubMed  Google Scholar 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18

    CAS  PubMed  Google Scholar 

  • Tarmy EM, Kaplan NO (1968) Chemical characterization of D-lactate dehydrogenase from Escherichia coli B. J Biol Chem 271:2579–2586

    Google Scholar 

  • Tong IT, Cameron DC (1992) Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniaedha regulon genes. Appl Biochem Biotechnol 34–35:149–159

    PubMed  Google Scholar 

  • Tong IT, Liao HH, Cameron DC (1991) 1,3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541–3546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voloch M, Jansen NB, Ladisch MR, Tsao GT, Narayan R, Rodwell VW (1985) 2,3-Butanediol. In: Cooney CL, Humphrey AE (eds) Comprehensive biotechnology. Pergamon, Oxford, pp 933–947

    Google Scholar 

  • Zeng AP (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Biosyst Eng 14:169–175

    CAS  Google Scholar 

  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  PubMed  Google Scholar 

  • Zeng AP, Biebl H, Schlieker H, Decker WD (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enzyme Microb Technol 15:770–779

    CAS  Google Scholar 

  • Zeng AP, Ross A, Hibel H, Tag C, Günzel B, Decker WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911

    CAS  PubMed  Google Scholar 

  • Zhao DH, Li JL (2004) Construction and characterization of double mutants in nitrogenase of Klebsiella pneumoniae. Chin Sci Bull 49:1707–1713

    CAS  Google Scholar 

  • Zhu MM, Lawman PD, Cameron DC (2002) Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol Prog 18:694–699

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technologies Research and Development Program of China during the 10th Five-Year Projects period (2001BA708B01-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Tian, J. & Li, J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73, 1017–1024 (2007). https://doi.org/10.1007/s00253-006-0563-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0563-7

Keywords

Navigation