Skip to main content
Log in

Association of TLR5 sequence variants and mRNA level with cytokine transcription in pigs

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The Toll-like receptor 5 (TLR5) plays a crucial role in host defense against flagellated bacteria by recognizing flagellin. Accumulating evidence suggests that single nucleotide polymorphisms (SNPs) in TLR5 have an effect on flagellin recognition and are associated with susceptibility/resistance to disease. In this study, we analyzed association of SNPs, including c.834T>G, c.1065T>C, c.1205C>T, c.1246A>T, c.1269G>A, and c.1398C>T, as well as mRNA level of TLR5 with the abundance of transcripts of cytokines in pigs. SNPs c.1246A>T and c.1269G>A were significantly associated with the transcript abundance of interleukin (IL)-2, and SNPs c.834T>G and c.1398C>T with IL-10 (P < 0.05); the haplotypes showed a tendency to affect the transcript abundance of IL-10 (P = 0.0660) and significantly associated with the transcription of TLR5 (P < 0.01); the abundance of transcripts of TLR5 and IL-10 were strongly correlated (P < 0.01). The results indicated that the SNPs, associated with the transcript abundance of cytokines, were related to immune responsiveness mediated by cytokine, which, in turn, would have a role in pig breeding for disease resistance. Furthermore, the positive correlation between the abundance of TLR5 and IL10 suggest a link between TLR5 activation and IL-10 expression in porcine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from Toll-like receptors. Science 304:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 59:791–808

    Article  PubMed  CAS  Google Scholar 

  • Chung WS, Nam DH, Jo DJ, Lee JH (2011) Association of Toll-like receptor 5 gene polymorphism with susceptibility to ossification of the posterior longitudinal ligament of the spine in Korean population. J Korean Neurosurg Soc 49:8–12

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta S, Pal P, Mukhopadhyay ND, Fu Y, Ratovitski EA, Moon CS, Hoque MO, Fisher PB, Trink B (2012) A single nucleotide polymorphism in the human PIGK gene associates with low PIGK expression in colorectal cancer patients. Int J Oncol. doi:10.3892/ijo.2012.1567

  • Didierlaurent A, Ferrero I, Otten LA, Dubois B, Reinhardt M, Carlsen H, Blomhoff R, Akira S, Kraehenbuhl JP, Sirard JC (2004) Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 172:6922–6930

    PubMed  CAS  Google Scholar 

  • Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galán JE, Flavell RA, Alexopoulou L (2006) Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci U S A 103:12487–12492

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Flori L, Lecardonnel J, Esquerré D, Hu ZL, Teillaud A, Lemonnier G, Lefèvre F, Oswald IP, Rogel-Gaillard C (2011) Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response. BMC Genom 11:292

    Article  Google Scholar 

  • Goudy KS, Johnson MC, Garland A, Li C, Samulski RJ, Wang B, Tisch R (2011) Reduced IL-2 expression in NOD mice leads to a temporal increase in CD62Llo FoxP3+ CD4+ T cells with limited suppressor activity. Eur J Immunol 41:1480–1490

    Article  PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires' disease. J Exp Med 198:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM (2009) Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One 4:e5990

    Article  PubMed  Google Scholar 

  • Holm S, Mackiewicz Z, Holm AK, Konttinen YT, Kouri VP, Indahl A, Salo J (2009) Pro-inflammatory, pleiotropic, and anti-inflammatory TNF-alpha, IL-6, and IL-10 in experimental porcine intervertebral disk degeneration. Vet Pathol 46:1292–1300

    Article  PubMed  CAS  Google Scholar 

  • House AK, Gregory SP, Catchpole B (2008) Pattern-recognition receptor mRNA expression and function in canine monocyte/macrophages and relevance to canine anal furunuclosis. Vet Immunol Immunopathol 124:230–240

    Article  PubMed  CAS  Google Scholar 

  • Kathrani A, Holder A, Catchpole B et al (2012) TLR5 risk-associated haplotype for canine inflammatory bowel disease confers hyper-responsiveness to flagellin. PLoS One 7:e30117

    Article  PubMed  CAS  Google Scholar 

  • Kathrani A, House A, Catchpole B et al (2010) Polymorphisms in the TLR4 and TLR5 gene are significantly associated with inflammatory bowel disease in German shepherd dogs. PLoS One 5:e15740

    Article  PubMed  CAS  Google Scholar 

  • Kathrani A, House A, Catchpole B, Murphy A, Werling D, Allenspach K (2011) Breed-independent Toll-like receptor 5 polymorphisms show association with canine inflammatory bowel disease. Tissue Antigens 78:94–101

    Article  PubMed  CAS  Google Scholar 

  • Keirstead ND, Hayes MA, Vandervoort GE, Brooks AS, Squires EJ, Lillie BN (2011) Single nucleotide polymorphisms in collagenous lectins and other innate immune genes in pigs with common infectious diseases. Vet Immunol Immunopathol 142:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Cho H, Lee D et al (2012) Association between SNPs and gene expression in multiple regions of the human brain. Transl Psychiatry 2:e113

    Article  PubMed  CAS  Google Scholar 

  • Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, Fort M, Hershberg RM (2004) Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 113:1296–1306

    PubMed  CAS  Google Scholar 

  • Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6:777–784

    Article  PubMed  CAS  Google Scholar 

  • Merlo A, Calcaterra C, Mènard S, Balsari A (2007) Cross-talk between Toll-like receptors 5 and 9 on activation of human immune responses. J Leukoc Biol 82:509–518

    Article  PubMed  CAS  Google Scholar 

  • Nerren JR, Swaggerty CL, MacKinnon KM, Genovese KJ, He H, Pevzner I, Kogut MH (2009) Differential mRNA expression of the avian-specific Toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics 61:71–77

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Cava CF, Ishihara S, Rumi MA, Kawashima K, Ishimura N, Kazumori H, Udagawa J, Kadowaki Y, Kinoshita Y (2003) Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol 170:3977–3985

    PubMed  CAS  Google Scholar 

  • Ramírez Cruz NE, Maldonado Bernal C, Cuevas Urióstegui ML, Castañoń J, López Macías C, Isibasi A (2004) Toll-like receptors: dysregulation in vivo in patients with acute respiratory distress syndrome. Rev Alerg Mex 51:210–217

    PubMed  Google Scholar 

  • Re F, Strominger JL (2004) IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J Immunol 173:7548–7555

    PubMed  CAS  Google Scholar 

  • Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Höhler T (2002) Differential regulation of interleukin-10 production by genetic and environmental factors—a twin study. Genes Immun 3:407–413

    Article  PubMed  CAS  Google Scholar 

  • Shinkai H, Suzuki R, Akiba M, Okumura N, Uenishi H (2011) Porcine Toll-like receptors: recognition of Salmonella enterica serovar Choleraesuis and influence of polymorphisms. Mol Immunol 48:1114–1120

    Article  PubMed  CAS  Google Scholar 

  • Shinkai H, Tanaka M, Morozumi T, Eguchi-Ogawa T, Okumura N, Muneta Y, Awata T, Uenishi H (2006) Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 58:324–330

    Article  PubMed  CAS  Google Scholar 

  • Sitaraman SV, Klapproth JM, Moore DA 3rd, Landers C, Targan S, Williams IR, Gewirtz AT (2005) Elevated flagellin-specific immunoglobulins in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 288:G403–G406

    Article  PubMed  CAS  Google Scholar 

  • Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A (2003) Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 4:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Strle K, Shin JJ, Glickstein LJ, Steere AC (2012) Association of a Toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum 64:1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Suradhat S, Thanawongnuwech R, Poovorawan Y (2003) Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus. J Gen Virol 84:453–459

    Article  PubMed  CAS  Google Scholar 

  • Suradhat S, Thanawongnuwech R (2003) Upregulation of interleukin-10 gene expression in the leukocytes of pigs infected with porcine reproductive and respiratory syndrome virus. J Gen Virol 84:2755–2760

    Article  PubMed  CAS  Google Scholar 

  • Tworek D, Kuna P (2005) The role of interleukin 10 in allergic inflammation. Pol Merkur Lekarski 18:125–128

    PubMed  CAS  Google Scholar 

  • Vicente-Suarez I, Takahashi Y, Cheng F, Horna P, Wang HW, Wang HG, Sotomayor EM (2007) Identification of a novel negative role of flagellin in regulating IL-10 production. Eur J Immunol 37:3164–3175

    Article  PubMed  CAS  Google Scholar 

  • Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, Neish AS, Uematsu S, Akira S, Williams IR, Gewirtz AT (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117:3909–3921

    PubMed  CAS  Google Scholar 

  • Weaver LK, Pioli PA, Wardwell K, Vogel SN, Guyre PM (2007) Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors. J Leukoc Biol 81:663–671

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Jia J, Mo D et al (2010) Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS One 5:e11377

    Article  PubMed  Google Scholar 

  • Yang XQ, Murani E, Ponsuksili S, Wimmers K (2012) Association of TLR4 polymorphism with cytokine expression level and pulmonary lesion score in pigs. Mol Biol Rep 39:7003–7009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (31072007) and the German Federal Ministry of Education and Research (BMBF) (FUGATOplus-GeneDialog, FKZ 0315130 A) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wimmers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Murani, E., Ponsuksili, S. et al. Association of TLR5 sequence variants and mRNA level with cytokine transcription in pigs. Immunogenetics 65, 125–132 (2013). https://doi.org/10.1007/s00251-012-0662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0662-9

Keywords

Navigation