Skip to main content
Log in

NMR q-space analysis of canonical shapes of human erythrocytes: stomatocytes, discocytes, spherocytes and echinocytes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

q-Space plots obtained experimentally using pulsed field-gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) spectroscopy from water diffusing in red blood cells (RBCs) of different canonical (distinct variant) morphologies have “signature” features. The experimental q-space plots from suspensions of stomatocytes, echinocytes and spherocytes generated chemically had no diffraction features; in contrast a sample of blood from a patient with hereditary spherocytosis showed diffraction minima. To understand the forms of q-space plots, mathematical/geometrical models of discocytes, stomatocytes, echinocytes and spherocytes were used as restricting boundaries in simulations of water diffusion with Monte Carlo random walks. These simulations indicated that diffusion-diffraction minima are expected for each of the cell shapes considered. The absence of diffusion-diffraction minima in stomatocytes generated by dithiothreitol treatment was surmised to be due to non-alignment of the cells with the magnetic field of the NMR spectrometer. Differential interference contrast microscopy images of the chemically generated spherocyte and echinocyte suspensions showed them to be heterogeneous in cell shape. Therefore, we concluded that the shape heterogeneity caused the loss of the diffusion-diffraction features, which were observed in the more homogeneous sample from a patient with hereditary spherocytosis, and in the simulations of homogeneous cell suspensions. This understanding of factors that affect q-space plots from RBC suspensions will assist morphological studies of other cell and tissue types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CDTA:

Trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid

DIC:

Differential interference contrast

DTT:

Dithiothreitol

EGTA:

Ethylene glycol-bis(2-aminoethylether)-N,N′-tetraacetic acid

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulphonic acid

Ht :

Haematocrit, or packed cell volume

MI:

Morphological index

MRT:

Mean residence time

NMR:

Nuclear magnetic resonance

PBS:

Phosphate-buffered saline

PGSE:

Pulsed field-gradient spin echo

PGSTE:

Pulsed field-gradient stimulated echo

RBC:

Red blood cell

RMSD:

Root-mean-square displacement

WBC:

White blood cell

References

  • Benga G, Pop VI, Popescu O, Borza V (1990) On measuring the diffusional water permeability of human red blood cells and ghosts by nuclear magnetic resonance. J Biochem Biophys Methods 21:87–102

    Article  PubMed  CAS  Google Scholar 

  • Benga G, Chapman BE, Gallagher CH, Cooper D, Kuchel PW (1993) NMR-studies of diffusional water permeability of red blood cells from macropod marsupials (Kangaroos and Wallabies). Comp Biochem Physiol 104A:799–803

    Article  Google Scholar 

  • Benga G, Kuchel PW, Chapman BE, Cox GC, Ghiran I, Gallagher CH (2000) Comparative cell shape and diffusional water permeability of red blood cells from Indian elephant (Elephas maximus) and man (Homo sapiens). Comp Haematol Int 10:1–8

    Article  Google Scholar 

  • Bessis M (1972) Red-cell shapes - illustrated classification and its rationale. Nouv Rev Fr Hematol 12:721–746

    PubMed  CAS  Google Scholar 

  • Conlon T, Outhred R (1972) Water diffusion permeability of erythrocytes using an NMR technique. Biochim Biophys Acta 288:354–361

    Article  PubMed  CAS  Google Scholar 

  • Coxeter HSM (1969) Introduction to geometry. Wiley, New York

    Google Scholar 

  • Coy A, Callaghan PT (1994) Pulsed gradient spin-echo NMR “diffusive diffraction” experiments on water surrounding close-packed polymer spheres. J Colloid Interface Sci 168:373–379

    Article  CAS  Google Scholar 

  • Endre ZH, Kuchel PW (1986) Viscosity of concentrated-solutions and of human-erythrocyte cytoplasm determined from NMR measurement of molecular correlation times: the dependence of viscosity on cell-volume. Biophys Chem 24:337–356

    Article  PubMed  CAS  Google Scholar 

  • Gedde MM, Huestis WH (1997) Membrane potential and human erythrocyte shape. Biophys J 72:1220–1233

    Article  PubMed  CAS  Google Scholar 

  • Kuchel PW, Coy A, Stilbs P (1997) NMR “diffusion-diffraction” of water revealing alignment of erythrocytes in a magnetic field and their dimensions and membrane transport characteristics. Magn Reson Med 37:637–643

    Article  PubMed  CAS  Google Scholar 

  • Kuchel PW, Durrant CJ, Chapman BE, Jarrett PS, Regan DG (2000) Evidence of red cell alignment in the magnetic field of an NMR spectrometer based on the diffusion tensor of water. J Magn Reson 145:291–301

    Article  PubMed  CAS  Google Scholar 

  • Kuchel PW, Eykyn TR, Regan DG (2004) Measurement of compartment size in q-space experiments: Fourier transform of the second derivative. Magn Reson Med 52:907–912

    Article  PubMed  Google Scholar 

  • Larkin TJ, Kuchel PW (2009) Erythrocyte orientational and cell volume effects on NMR q-space analysis: simulations of restricted diffusion. Eur Biophys J 39:139–148

    Article  PubMed  Google Scholar 

  • Larkin TJ, Kuchel PW (2010) Mathematical models of naturally “morphed” human erythrocytes: stomatocytes and echinocytes. Bull Math Biol 72:1323–1333

    Article  PubMed  Google Scholar 

  • Larkin TJ, Pages G, Torres AM, Kuchel PW (2009) Rapid acquisition of NMR diffusion-diffraction q-space plots from erythrocytes with varying gradient orientation. In: Chmelik C, Kanellopoulos N, Kärger J, Theodorou D (eds) Diffusion Fundamentals III. Leipziger Universitätsverlag, Leipzig, pp 409–420

    Google Scholar 

  • Martino R, Negri M, Di Marco A (1980) Simple, geometrical model for a typical echinocyte III. Experientia 36:302–303

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Lim G, Wortis M (2002) Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing. Biophys J 82:1756–1772

    Article  PubMed  CAS  Google Scholar 

  • Muñoz San Martín S, Sebastián JL, Sancho M, Álvarez G (2006) Modeling normal and altered human erythrocyte shapes by a new parametric equation: application to the calculation of induced transmembrane potentials. Bioelectromagnetics 27:521–527

    Article  PubMed  Google Scholar 

  • Pages G, Szekely D, Kuchel PW (2008) Erythrocyte-shape evolution recorded with fast-measurement NMR diffusion-diffraction. J Magn Reson Imag 28:1409–1416

    Article  Google Scholar 

  • Pages G, Yau TW, Kuchel PW (2010) Erythrocyte shape reversion from echinocytes to discocytes: Kinetics via fast-measurement NMR diffusion-diffraction. Magn Reson Med 64:645–652

    Article  PubMed  CAS  Google Scholar 

  • Pelta MD, Morris GA, Stchedroff MJ, Hammond SJ (2002) A one-shot sequence for high-resolution diffusion-ordered spectroscopy. Magn Reson Chem 40:S147–S152

    Article  CAS  Google Scholar 

  • Price-Jones C (1929) Red cell diameters in one hundred healthy persons and in pernicious anæmia: the effect of liver treatment. J Pathol Bacteriol 32:479–501

    Article  CAS  Google Scholar 

  • Raftos JE, Chapman BE, Kuchel PW, Lovric VA, Stewart IM (1986) Intra- and extraerythrocyte pH at 37 °C and during long term storage at 4 °C: 31P NMR measurements and an electrochemical model of the system. Haematologia 19:251–268

    PubMed  CAS  Google Scholar 

  • Raftos JE, Bulliman BT, Kuchel PW (1990) Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data. J Gen Phys 95:1183–1204

    Article  CAS  Google Scholar 

  • Regan DG, Kuchel PW (2000) Mean residence time of molecules diffusing in a cell bounded by a semi-permeable membrane: Monte Carlo simulations and an expression relating membrane transition probability to permeability. Eur Biophys J 29:221–227

    Article  PubMed  CAS  Google Scholar 

  • Regan DG, Kuchel PW (2002) Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells. Biophys J 83:161–171

    Article  PubMed  CAS  Google Scholar 

  • Regan DG, Kuchel PW (2003a) Simulations of NMR-detected diffusion in suspensions of red cells: the “signatures” in q-space plots of various lattice arrangements. Eur Biophys J 31:563–574

    PubMed  Google Scholar 

  • Regan DG, Kuchel PW (2003b) Simulations of NMR-detected diffusion in suspensions of red cells: the effects of variation in membrane permeability and observation time. Eur Biophys J 32:671–675

    Article  PubMed  Google Scholar 

  • Savitz D, Sidel VW, Solomon AK (1964) Osmotic properties of human red cells. J Gen Physiol 48:79–94

    Article  PubMed  CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  • Tachev KD, Danov KD, Kralchevsky PA (2004) On the mechanism of stomatocyte-echinocyte transformations of red blood cells: experiment and theoretical model. Colloids Surf B Biointerfaces 34:123–140

    Article  PubMed  CAS  Google Scholar 

  • Torres AM, Michniewicz RJ, Chapman BE, Young GAR, Kuchel PW (1998) Characterisation of erythrocyte shapes and sizes by NMR diffusion-diffraction of water: correlations with electron micrographs. Magn Reson Imag 16:423–434

    Article  CAS  Google Scholar 

  • Torres AM, Taurins AT, Regan DG, Chapman BE, Kuchel PW (1999) Assignment of coherence features in NMR q-space plots to particular diffusion modes in erythrocyte suspensions. J Magn Reson 138:135–143

    Article  PubMed  CAS  Google Scholar 

  • Truong H-TN, Daleke DL, Huestis WH (1993a) Dithiothreitol stimulates the activity of the plasma membrane aminophospholipid translocator. Biochim Biophys Acta 1150:57–62

    Article  PubMed  CAS  Google Scholar 

  • Truong H-TN, Daleke DL, Huestis WH (1993b) Human erythrocyte shape regulation: interaction of metabolic and redox status. Biochim Biophys Acta 1150:51–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Joy Ho for facilitating access to the patient with hereditary spherocytosis. The work was funded by a Discovery grant from the Australian Research Council to P.W.K., from Cure the Future (Cell and Gene Trust) to J.E.J.R., and a University of Sydney postgraduate award to T.J.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Larkin.

Additional information

Special Issue: From kinetics to imaging: An NMR odyssey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, T.J., Pages, G., Chapman, B.E. et al. NMR q-space analysis of canonical shapes of human erythrocytes: stomatocytes, discocytes, spherocytes and echinocytes. Eur Biophys J 42, 3–16 (2013). https://doi.org/10.1007/s00249-012-0822-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0822-8

Keywords

Navigation