Skip to main content
Log in

Influence of Salinity on the In Vitro Development of Glomus intraradices and on the In Vivo Physiological and Molecular Responses of Mycorrhizal Lettuce Plants

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Increased salinization of arable land is expected to have devastating global effects in the coming years. Arbuscular mycorrhizal fungi (AMF) have been shown to improve plant tolerance to abiotic environmental factors such as salinity, but they can be themselves negatively affected by salinity. In this study, the first in vitro experiment analyzed the effects of 0, 50, or 100 mM NaCl on the development and sporulation of Glomus intraradices. In the second experiment, the effects of mycorrhization on the expression of key plant genes expected to be affected by salinity was evaluated. Results showed that the assayed isolate G. intraradices DAOM 197198 can be regarded as a moderately salt-tolerant AMF because it did not significantly decrease hyphal development or formation of branching absorbing structures at 50 mM NaCl. Results also showed that plants colonized by G. intraradices grew more than nonmycorrhizal plants. This effect was concomitant with a higher relative water content in AM plants, lower proline content, and expression of Lsp5cs gene (mainly at 50 mM NaCl), lower expression of the stress marker gene Lslea gene, and lower content of abscisic acid in roots of mycorrhizal plants as compared to nonmycorrhizal plants, which suggest that the AM fungus decreased salt stress injury. In addition, under salinity, AM symbiosis enhanced the expression of LsPIP1. Such enhanced gene expression could contribute to regulating root water permeability to better tolerate the osmotic stress generated by salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adiku, G, Renger, M, Wessolek, G, Facklam, M, Hech-Bischoltz, C (2001) Simulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agric Water Manag 47: 55–68

    Article  Google Scholar 

  2. Al-Karaki, GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109: 1–7

    Article  Google Scholar 

  3. Al-Karaki, GN, Hammad, R, Rusan, M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43–47

    Article  CAS  Google Scholar 

  4. Aroca, R, Tognoni, F, Irigoyen, JJ, Sánchez-Díaz, M, Pardossi A (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem 39: 1067–1073

    Article  CAS  Google Scholar 

  5. Aroca, R, Vernieri, P, Irigoyen, JJ, Sánchez-Díaz, M, Tognoni, F, Pardossi, A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165: 671–679

    Article  CAS  Google Scholar 

  6. Bago, B, Cano, C (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: Declerck, S, Strullu, DG, Fortin, JA (Eds.) In Vitro Culture of Mycorrhizas, Springer, Berlin Heidelberg New York, pp 111–138

    Chapter  Google Scholar 

  7. Bago, B, Azcon-Aguilar, C, Goulet, A, Piche, Y (1998) Branched absorbing structure (BAS), a feature of the extrarradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139: 375–388

    Article  Google Scholar 

  8. Barrieu, F, Marty-Mazars, D, Thomas, D, Chaumont, F, Charbonnier, M, Marty, F (1999) Desiccation and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells. Planta 209: 77–86

    Article  PubMed  CAS  Google Scholar 

  9. Bates, LS, Waldren, RP, Teare, ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39: 205–207

    Article  CAS  Google Scholar 

  10. Blig, EG, Dyer, WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917

    Google Scholar 

  11. Blintsov, AN, Gussakovskaya, MA (2004) Immunochemical approach to the problem of differential determination of natural forms of abscisic acid. Biochemistry (Mosc) 69: 1099–1108

    Article  CAS  Google Scholar 

  12. Bray, EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25: 153–161

    Article  PubMed  CAS  Google Scholar 

  13. Cho, K, Toler, H, Lee, J, Ownley, B, Stutz, JC, Moore, JL, Augé, RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163: 517–528

    Article  PubMed  CAS  Google Scholar 

  14. Close, TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97: 795–803

    Article  CAS  Google Scholar 

  15. Cranenbrouk, S, Voets, L, Bivort, C (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck, S, Strullu, DG, Fortin, JA (Eds.) In Vitro Culture of Mycorrhizas, Springer, Berlin Heidelberg New York, pp 341–375

    Chapter  Google Scholar 

  16. Declerck, S, Strullu, DG, Fortin, JA (2005) In Vitro Culture of Mycorrhizas. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Duan, X, Newman, DS, Reiber, JM, Green, CD, Saxton, AM, Augé, RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47: 1541–1550

    Article  CAS  Google Scholar 

  18. Duncan, DB (1955) Multiple range and multiple F-tests. Biometrics 11: 1–42

    Article  Google Scholar 

  19. Estrada-Luna, AA, Davies, FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160: 1073–1083

    Article  PubMed  CAS  Google Scholar 

  20. Feng, G, Zhang, FS, Li, XL, Tian, CY, Tang, C (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhizal is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185–190

    Article  PubMed  CAS  Google Scholar 

  21. Giovannetti, M, Mosse, B (1980) An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytol 84: 489–500

    Article  Google Scholar 

  22. Giri, R, Kapoor, R, Mukerji, KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38: 170–175

    Article  Google Scholar 

  23. Goicoechea, N, Szalai, G, Antolín, MC, Sánchez-Díaz, M, Paldi, E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153: 706–711

    CAS  Google Scholar 

  24. Hasegawa, PM, Bressan, RA, Zhu, KL, Bohnert, HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463–499

    Article  PubMed  CAS  Google Scholar 

  25. Jang, JY, Kim, DG, Kim, YO, Kim, JS, Kang, H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54: 713–725

    Article  PubMed  CAS  Google Scholar 

  26. Jindal, V, Atwal, A, Sekhon, BS, Rattan, S, Singh, R (1993) Effect of vesicular–arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol Biochem 31: 475–481

    CAS  Google Scholar 

  27. Johansson, I, Karlsson, M, Johansson, U, Larsson, C, Kjellbom, P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465: 324–342

    Article  PubMed  CAS  Google Scholar 

  28. Juniper, S, Abbott, L (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza 4: 45–57

    Article  Google Scholar 

  29. Juniper, S, Abbott, LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16: 371–379

    Article  PubMed  CAS  Google Scholar 

  30. Kawasaki, S, Borchert, C, Deyholos, M, Wang, H, Brazille, S, Kawai, K, Galbraith, D, Bohnert, HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889–905

    Article  PubMed  CAS  Google Scholar 

  31. Kay, R, Chau, A, Daly, M (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plants genes. Science 236: 1299–1302

    Article  PubMed  CAS  Google Scholar 

  32. Kishor, PB, Hong, Z, Miao, GH, Hu, CA, Verma, DPS (1995) Overexpression of Δ1-pyrroline-5-carboxilate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387–1394

    PubMed  CAS  Google Scholar 

  33. Ludwig-Müller, J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Kapulnik Y, Douds, DD (Eds.) Arbuscular Mycorrhizas: Physiology and Function, Kluwer, The Netherlands, pp 263–285

    Google Scholar 

  34. Luu, DT, Maurel, C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28: 85–96

    Article  CAS  Google Scholar 

  35. Mahajan, S, Tuteja, N (2005) Cold, salinity and drought stress: an overview. Arch Biochem Biophys 444: 139–158

    Article  PubMed  CAS  Google Scholar 

  36. Marschner, H (1995) Mineral Nutrition of Higher Plant, 2nd ed. Academic, New York

    Google Scholar 

  37. Morgan, JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 33: 299–319

    Article  Google Scholar 

  38. Munns, R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645–663

    Article  PubMed  CAS  Google Scholar 

  39. Ouziad, F, Wilde, P, Schmelzer, E, Hildebrandt, U, Bothe, H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57: 177–186

    Article  CAS  Google Scholar 

  40. Phillips, JM, Hayman, DS (1970) Improved procedure of clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 159–161

    Article  Google Scholar 

  41. Porcel, R, Azcón, R, Ruiz-Lozano, JM (2004) Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65: 211–221

    Article  CAS  Google Scholar 

  42. Porcel, R, Aroca, R, Azcón, R, Ruiz-Lozano, JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60: 389–404

    Article  PubMed  CAS  Google Scholar 

  43. Ramakrishnan, B, Johri, BN, Gupta, RK (1988) Influence of the VAM fungus Glomus caledonius on free proline accumulation in water-stressed maize. Curr Sci 57: 1082–1084

    Google Scholar 

  44. Ramoliya, P, Patel, H, Pandey, AN (2004) Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For Ecol Manag 2002: 181–193

    Article  Google Scholar 

  45. Rosendahl, CN, Rosendahl, S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativis L.) to salt stress. Environ Exp Bot 31: 313–318

    Article  Google Scholar 

  46. Ruiz-Lozano, JM, Azcón, R (1997) Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol-induced water stress. Symbiosis 23: 9–22

    Google Scholar 

  47. Ruiz-Lozano, JM, Azcón, R, Gómez, M (1995) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61: 456–460

    PubMed  CAS  Google Scholar 

  48. Ruiz-Lozano, JM, Azcón, R, Gómez, M (1996) Alleviation of salt stress by arbuscular–mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98: 767–772

    Article  CAS  Google Scholar 

  49. Schwartz, SH, Qin, X, Zeevaart, JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131: 1591–1601

    Article  PubMed  CAS  Google Scholar 

  50. Walker-Simmons, M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84: 61–66

    Article  PubMed  CAS  Google Scholar 

  51. Wang, W, Vinocur, B, Altman, A (2003) Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta 218: 1–14

    Article  PubMed  CAS  Google Scholar 

  52. Yano-Melo, AM, Saggin, OJ, Costa-Maia, L (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95: 343–348

    Article  Google Scholar 

  53. Yoshiba, Y, Kiyosue, T, Nakashima, K, Yamaguchi-Shinozaki, K, Shinozaki, K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 18: 1095–1102

    Google Scholar 

  54. Zhang, J, Jia, W, Yang, J, Ismail, AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97: 111–119

    Article  Google Scholar 

Download references

Acknowledgments

This work and R. Porcel were financed by Comision Interministerial de Ciencia y Tecnologia, Fondo Europeo de Desarrollo Regional (Project AGL2005-01237). Dr. F. Jahromi was supported by the Special Studies Leave Program of Charles Sturt University, Australia. We thank Dr. A. Bago and C. Cano (Estación Experimental del Zaidín, Granada, Spain) for providing us with the monoxenic inoculum of G. intraradices and for their assistance with the in vitro culture of the fungus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Ruiz-Lozano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahromi, F., Aroca, R., Porcel, R. et al. Influence of Salinity on the In Vitro Development of Glomus intraradices and on the In Vivo Physiological and Molecular Responses of Mycorrhizal Lettuce Plants. Microb Ecol 55, 45–53 (2008). https://doi.org/10.1007/s00248-007-9249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9249-7

Keywords

Navigation