Skip to main content

Advertisement

Log in

A Look at Arginine in Membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Here, we review the current knowledge about the energetics of arginine insertion into the bilayer hydrocarbon core, and we discuss discrepancies between experimental and computational studies of the insertion process. While simulations suggest that it should be very costly to place arginine into the hydrocarbon core, experiments show that arginine is found there. Both types of studies suggest that arginine insertion into the bilayer involves substantial bilayer deformation, with multiple hydrogen bonds between the arginine guanidinium group and lipid polar groups. It is possible that the discrepancies concerning the insertion cost of arginine arise because simulations overestimate the cost associated with bilayer deformation and underestimate the ability of the bilayer to adapt to charged and polar groups. This is an active area of research, and there is no doubt that a consensus view of arginine in membranes will soon emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Dorairaj S, Allen TW (2007) On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc Natl Acad Sci USA 104:4943–4948

    Article  CAS  PubMed  Google Scholar 

  • Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15:321–353

    Article  CAS  PubMed  Google Scholar 

  • Freeman TC Jr, Wimley WC (2010) A highly accurate statistical approach for the prediction of transmembrane beta-barrels. Bioinformatics 26:1965–1974

    Article  CAS  PubMed  Google Scholar 

  • Freites JA et al (2005) Interface connections of a transmembrane voltage sensor. Proc Natl Acad Sci USA 102:15059–15064

    Article  CAS  PubMed  Google Scholar 

  • Freites JA, Tobias DJ, White SH (2006) A voltage sensor water pore. Biophys J 91:L90–L92

    Article  CAS  PubMed  Google Scholar 

  • Han X, Mihailescu M, Hristova K (2006) Neutron diffraction studies of fluid bilayers with transmembrane proteins: structural consequences of the achondroplasia mutation. Biophys J 91:3736–3747

    Article  CAS  PubMed  Google Scholar 

  • Hessa T et al (2005a) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381

    Article  CAS  PubMed  Google Scholar 

  • Hessa T, White SH, von Heijne G (2005b) Membrane insertion of a potassium-channel voltage sensor. Science 307:1427

    Article  CAS  PubMed  Google Scholar 

  • Hessa T et al (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Jayasinghe S, Hristova K, White SH (2001) Energetics, stability, and prediction of transmembrane helices. J Mol Biol 312:927–934

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y et al (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y et al (2003b) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z et al (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 90:369–383

    Article  CAS  PubMed  Google Scholar 

  • Krepkiy D et al (2009) Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462:473–479

    Article  CAS  PubMed  Google Scholar 

  • Krishnakumar SS, London E (2007) Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. J Mol Biol 374:671–687

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2008) Is arginine charged in a membrane? Biophys J 94:L11–L13

    Article  CAS  PubMed  Google Scholar 

  • MacCallum JL, Bennett WF, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129:371–377

    Article  CAS  PubMed  Google Scholar 

  • MacCallum JL, Bennett WF, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404

    Article  CAS  PubMed  Google Scholar 

  • Miller G (2003) The puzzling portrait of a pore. Science 300:2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Parsegian A (1969) Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221:844–846

    Article  CAS  PubMed  Google Scholar 

  • Rathinakumar R, Wimley WC (2008) Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. J Am Chem Soc 130:9849–9858

    Article  CAS  PubMed  Google Scholar 

  • Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617

    Article  CAS  PubMed  Google Scholar 

  • Snider C et al (2009) MPEx: a tool for exploring membrane proteins. Protein Sci 18:2624–2628

    Article  CAS  PubMed  Google Scholar 

  • Ulmschneider MB, Sansom MS, Di NA (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struc Biol 5:521–527

    Article  CAS  Google Scholar 

  • White SH et al (2001) How membranes shape protein structure. J Biol Chem 276:32395–32398

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2002) Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures. Protein Sci 11:301–312

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2003) The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13:404–411

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC, Creamer TP, White SH (1996) Solvation energies of amino acid sidechains and backbone in a family of host-guest pentapeptides. Biochemistry 35:5109–5124

    Article  CAS  PubMed  Google Scholar 

  • Wolfenden R et al (1981) Affinities of amino acid side chains for solvent water. Biochemistry 20:849–855

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA 101:7363–7368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank our mentor, Stephen H. White, for countless moments of inspiration, and for helping us learn to be successful scientists and effective teachers. We would also like to thank the members of our own labs, past and present, for their constant hard work and for giving us the opportunity to share Steve’s lessons with the next generation. This work was supported by NIH grants GM60000 and GM068619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Wimley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hristova, K., Wimley, W.C. A Look at Arginine in Membranes. J Membrane Biol 239, 49–56 (2011). https://doi.org/10.1007/s00232-010-9323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9323-9

Keywords

Navigation