Skip to main content
Log in

Characterization of the Mechanism of the Staphylococcus aureus Cell Envelope by Bacitracin and Bacitracin-Metal Ions

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Bacitracin is a metal-dependent dodecapeptide antipeptide produced by Bacillus species. Microcalorimetry was used to study the antimicrobial activity of bacitracin and bacitracin–metal ion complexation inhibited on Staphylococcus aureus at 37°C. The affinity of metal ions binding to bacitracin was investigated by isothermal titration calorimetry and was as follows: Cu(II) ≥ Ni(II) > Co(II) > Zn(II) ≥ Mn(II). The metal ion binding affinity is not relative to the antimicrobial activity of bacitracin–metal complexation. Atomic force microscopic images revealed that the surface of S. aureus treated by bacitracin–Zn(II) was rather rough compared to that treated by bacitracin only. The central cell surface displayed small depressed grooves around the septal annulus at the onset of division. Bacitracin mainly inhibited the splitting system within the thick cross walls as seen by transmission electron microscopy (TEM). The inhibition mechanism of bacitracin may be relative to the assistance of Zn(II) coordination with the cell surface as seen by TEM. We can put forward that the activity of bacitracin only inhibited growth and division initially from the synthesis of the cell wall, especially the cell wall of the septal annulus. The divalent metal ions function to increase the adsorption of bacitracin onto the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulrahim SMM, Haddadin SY, Odetallah NHM, Robinson RK (1999) Effect of Lactobacillus acidophilus and zinc bacitracin as dietary additives for broiler chickens. Br Poultry Sci 40:91–94

    Article  CAS  Google Scholar 

  • Bechtel DB, Bulla LA Jr (1976) Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol 127:1472–1481

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Popkin TJ, Cole RM (1993) Electron microscopy. In: Gerhardted P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 42–71

    Google Scholar 

  • Braga PC, Ricci D (1998) Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob Agents Chemother 42:18–22

    PubMed  CAS  Google Scholar 

  • Braga PC, Ricci D (2000) Detection of rokitamycin induced morphostructural alterations in Helicobacter pylori by atomic force microscopy. Chemotherapy 46:15–22

    Article  PubMed  CAS  Google Scholar 

  • Braga PC, Ricci D (2002) Differences in the susceptibility of Streptococcus pyogenes to rokitamycin and erythromycin A revealed by morphostructural atomic force microscopy. J Antimicrob Chemother 50:457–460

    Article  PubMed  CAS  Google Scholar 

  • Braga PC, Sasso M, Maci DS (1997) Cefodizime: effects of sub-inhibitory concentrations on adhesiveness and bacterial morphology of Staphylococcus aureus and Escherichia coli: comparison with cefotaxime and ceftriaxone. J Antimicrob Chemother 39:79–84

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301

    Article  PubMed  CAS  Google Scholar 

  • Chang TW, Gorbach SL, Bartlett JG, Saginur R (1980) Bacitracin treatment of antibiotic-associated colitis and diarrhea caused by Clostridium difficile toxin. Gastroenterology 78:1584–1586

    PubMed  CAS  Google Scholar 

  • Chaw KC, Manimaran M, Tay FEH (2005) Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 49:4853–4859

    Article  PubMed  CAS  Google Scholar 

  • Dufrêne YF (2004a) Refining our perception of bacterial surfaces with the atomic force microscope. J Bacteriol 186:3283–3285

    Article  PubMed  CAS  Google Scholar 

  • Dufrêne YF (2004b) Using nanotechniques to explore microbial surfaces. Nat Rev Microbiol 2:451–460

    Article  PubMed  CAS  Google Scholar 

  • Epperson JD, Ming LJ (2000) Proton NMR studies of Co II complexes of the peptide antibiotic bacitracin and analogues: insight into structure–activity relationship. Biochemistry 39:4037–4045

    Article  PubMed  CAS  Google Scholar 

  • Froyshov O (1984) The bacitracins: properties, biosynthesis, and fermentation. In: Vandamme EJ (ed) Biotechnology of industrial antibiotics. Marcel Dekker, New York, pp 665–694

    Google Scholar 

  • Garbutt JT, Morehouse AL, Hanson AM (1961) Metal binding properties of bacitracins. J Agric Food Chem 9:285

    Article  CAS  Google Scholar 

  • Giesbrecht P, Wecke J, Reinicke B (1976) On the morphogenesis of the cell wall of staphylococci. Int Rev Cytol 44:225–318

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht P, Kersten T, Maidhof H, Wecke J (1997) Two alternative mechanisms of cell separation in staphylococci: one lytic and one mechanical. Arch Microbiol 167:239–250

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht P, Kersten T, Maidhof H, Wecke J (1998) Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev 62:1371–1414

    PubMed  CAS  Google Scholar 

  • Hammes WP, Otto Kandler JW (1979) The sensitivity of the pseudomurein-containing genus Methanobacterium to inhibitors of murein synthesis. Arch Microbiol 123:275–279

    Article  CAS  Google Scholar 

  • Harel YM, Bailone A, Bibi E (1999) Resistance to bacitracin as modulated by an Escherichia coli homologue of the bacitracin ABC transporter BcrC subunit from Bacillus licheniformis. J Bacteriol 181:6176–6178

    PubMed  CAS  Google Scholar 

  • Hirotsu Y, Nishiuchi Y, Shiba T (1978) Total synthesis of bacitracin F. Peptide Chem 9:171–176

    Google Scholar 

  • Johansen CTG, Gram L (1996) Changes in cell morphology of Listeria monocytogenes and Shewanella putrefaciens resulting from the action of protamine. Appl Environ Microbiol 62:1058–1064

    PubMed  CAS  Google Scholar 

  • Konigsberg W, Craig LC (1962) On bacitracin F. J Org Chem 27:934–938

    Article  CAS  Google Scholar 

  • Konz D, Klens A, Schörgendorfer K, Marahiel MA (1997) The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4:927–937

    Article  PubMed  CAS  Google Scholar 

  • Kotra LP, Golemi D, Amro NA, Liu GY, Mobashery S (1999) Dynamics of the lipopolysaccharide assembly on the surface of Escherichia coli. J Am Chem Soc 121:8707–8711

    Article  CAS  Google Scholar 

  • Lyon BR, Skurray R (1987) Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134

    PubMed  CAS  Google Scholar 

  • MacKenzie FM, Greig P, Morrison D, Edwards G, Gould IM (2002) Identification and characterization of teicoplanin-intermediate Staphylococcus aureus blood culture isolates in NE Scotland. J Antimicrob Chemother 50:689–697

    Article  PubMed  CAS  Google Scholar 

  • Matias VRF, Beveridge TJ (2006) Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188:1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33:3342–3349

    Article  PubMed  CAS  Google Scholar 

  • Meincken M, Holroyd DL, Rautenbach M (2005) Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrob Agents Chemother 49:4085–4092

    Article  PubMed  CAS  Google Scholar 

  • Ming LJ, Epperson JD (2002) Metal binding and structure–activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem 91:46–58

    Article  PubMed  CAS  Google Scholar 

  • Monroe S, Polk R (2000) Antimicrobial use and bacterial resistance. Curr Opin Microbiol 3:496–501

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja TG, Chengappa MM (1998) Liver abscesses in feedlot cattle: a review. J Anim Sci 76:287–298

    PubMed  CAS  Google Scholar 

  • O’Neill NM, Vine GJ, Beezer AE, Bishop AH, Hadgraft J, Labetoulle C, Walker M, Bowler PG (2003) Antimicrobial properties of silver-containing wound dressings: a microcalorimetric study. Int J Pharm 263:61

    Article  PubMed  CAS  Google Scholar 

  • Pancholi V, Fischetti VA (1988) Isolation and characterization of the cell-associated region of group a streptococcal M6 protein. J Bacteriol 170:2618–2624

    PubMed  CAS  Google Scholar 

  • Paul TR, Venter A, Blaszczak LC, Parr JRTR, Labischinski H, Beveridge TJ (1995) Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin v derivative. J Bacteriol 177:3631–3640

    PubMed  CAS  Google Scholar 

  • Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel R, Grabnar M (1995) Bacillus licheniformis bacitracin resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol 16:969–976

    Article  PubMed  CAS  Google Scholar 

  • Podlesek Z, Comino A, Herzog-Velikonja B, Grabnar M (2000) The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. FEMS Microbiol Lett 188:103–106

    Article  PubMed  CAS  Google Scholar 

  • Rao S, Venkateswerlu G (1989) Metal ion influence on the growth inhibition of Neurospora crassa by bacitracin. Microbiology 19:253–258

    CAS  Google Scholar 

  • Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes. Chapman and Hall, London

    Google Scholar 

  • Schneewind O, Fowler A, Faull KF (1995) Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103–106

    Article  PubMed  CAS  Google Scholar 

  • Scogin DA, Mosberg HI, Storm DR, Gennis RB (1980) Binding of nickel and zinc ions to bacitracin A. Biochemistry 19:3348–3352

    Article  PubMed  CAS  Google Scholar 

  • Seebauer EG, Duliba EP, Scogin DA, Gennis RB, Belford RL (1983) EPR evidence on the structure of the copper-bacitracin A complex. J Am Chem Soc 105:4926–4929

    Article  CAS  Google Scholar 

  • Sin DW, Ho C, Wong Y, Ho S, Ip AC (2005) Analysis of major components of residual bacitracin and colistin in food samples by liquid chromatography tandem mass spectrometry. Anal Chim Acta 535:23–31

    Article  CAS  Google Scholar 

  • Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin: complexation with metal ion and C55 -isoprenyl pyrophosphate. Proc Natl Acad Sci USA 68:3223–3227

    Article  PubMed  CAS  Google Scholar 

  • Storm DR (1974) Mechanism of bacitracin action: a specifc lipidpeptide interaction. Ann NY Acad Sci 235:387–398

    Article  PubMed  CAS  Google Scholar 

  • Storm DR, Strominger JL (1967) Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc Natl Acad Sci USA 57:767–773

    Article  Google Scholar 

  • Storm DR, Strominger JL (1973) Complex formation between bacitracin peptides and isoprenyl pyrophosphates. J Biol Chem 248:3940–3945

    PubMed  CAS  Google Scholar 

  • Suurkuusk J, Wadso I (1982) A multichannel microcalorimetry system. Chem Sci 20:155–163

    CAS  Google Scholar 

  • Tollersrud T, Berge T, Andersen RS, Lund A (2001) Imaging the surface of Staphylococcus aureus by atomic force microscopy. APMIS 109:541–545

    Article  PubMed  CAS  Google Scholar 

  • Toscano WA Jr, Storm DR (1982) Bacitracin. Pharmacol Ther 16:199–210

    Article  PubMed  CAS  Google Scholar 

  • Touhami A, Jericho MH, Boyd JM, Beveridge TJ (2006) Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol 188:370–377

    Article  PubMed  CAS  Google Scholar 

  • Tsuji K, Robertson JH (1975) Improved high-performance liquid chromatographic method for polypeptide antibiotics and its application to study the effects of treatments to reduce microbial levels in bacitracin powder. J Chromatogr 112:663–672

    Article  PubMed  CAS  Google Scholar 

  • Verbelen C, Dupres V, Menozzi FD, Raze D, Baulard AR, Hols P, Dufrêne YF (2006) Ethambutol induced alterations in Mycobacterium bovis BCG imaged by atomic force microscopy. FEMS Microbiol Lett 264:192–197

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Maier E, Benz R, Hancock REW (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242

    Article  PubMed  CAS  Google Scholar 

  • Xie CL, Tang HK, Song ZH, Qu SS, Liao YT, Liu HS (1988) Microcalorimetry study of bacterial growth. Thermochim Acta 123:33–41

    Article  Google Scholar 

  • Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A, Suginaka H (1996) An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol 178:1565–1571

    PubMed  CAS  Google Scholar 

  • Zhao R, Liu Y, Xie ZX, Shen P, Qu SS (2000) A microcalorimetric method for studying the biological effects of La3+ on Escherichia coli. J Biochem Biophys Methods 46:1–9

    Article  CAS  Google Scholar 

  • Zhou H, Fan T, Zhang XD, Guo Q, Ogawa H (2007) Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem Mater 19:2144–2146

    Article  CAS  Google Scholar 

  • Zhu JC, Liu Y, Wong WK, Zhou B, Yin J (2006) Investigation of antibacterial activity of two kinds of novel Schiff bases on Escherichia coli by microcalorimetry. Chin J Chem 24:1295–1300

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (grants 30570015, 20621502, 20873096), the Research Foundation of the Chinese Ministry of Education ([2006]8-IRT0543) and the Natural Science Foundation of Hubei Province (2005ABC002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, ZD., Lin, Y., Zhou, B. et al. Characterization of the Mechanism of the Staphylococcus aureus Cell Envelope by Bacitracin and Bacitracin-Metal Ions. J Membrane Biol 225, 27–37 (2008). https://doi.org/10.1007/s00232-008-9130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9130-8

Keywords

Navigation