Skip to main content
Log in

Sensitivity analysis of thermal design parameters for focal plane assembly in a space spectral imaging instrument

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

There are deviations between real parameters and thermal design parameters on thermophysical attribute of focal plane assembly (FPA). The parameters are difficult to be determined accurately and the thermal design scheme will be affected with the values of the parameters. The thermal design problem of FPA is described by means of system sensitivity theory. The in-orbit heat balance equations are established, and the thermal design parameters, which might affect the temperature distribution of the FPA, are given. As an example, the sensitivity of thermal design parameters is analyzed for a FPA in a space spectral imaging instrument. A basis to determine the structural and thermophysical parameters for FPA is gotten, furthermore, an analytical method is provided for reliability validation of thermal design and operating reliability on orbit. It is shown that contact heat-transfer coefficient between mounted surfaces and surface emissivity are the main parameters affecting mean temperature of Charge converse device (CCD). The power of the inner heat source, thermal conductivity and inner contact heat-transfer coefficient are the primary parameters affecting temperature difference between CCD and the heat-transfer block. The thermal test is set up, and it is illuminated that the sensitivity analysis strategy based on the thermal design scheme is effective and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Guo L, Wu QW (2009) Thermal design and proof tests of CCD components in spectral imagers. Opt Precis Eng 17(10):2440–2444

    MathSciNet  Google Scholar 

  2. Guo L, Wu QW, Yan CHX et al (2010) Thermal design and verification of CCD components in spectral imagers at steady and transient states. Opt Precis Eng 18(11):2375–2383

    Google Scholar 

  3. Anees A, Thomas A, Robert G et al (2001) Structural and thermal modeling of a cooled CCD camera. SPIE 4444:122–129

    Article  Google Scholar 

  4. Kennea JA, Burrows DN, Wells A et al (2005) Controlling the swift XRT CCD temperature with passive cooling. SPIE 5898–16:1–11

    Google Scholar 

  5. Ding YW, Lu E (2003) Thermal design of CCD driver and its temperature changing in the course of taking picture of space remote sensor. Opt Tech 29(2):172–176

    Google Scholar 

  6. Zi KM, Wu QW, Guo J et al (2008) Thermal design of CCD focal plane assembly of space optical remote-sensor. Opt Tech 34(3):401–407

    Google Scholar 

  7. Chen ET, Lu E (2000) Thermal engineering design of CCD component of space remote-sensor. Opt Precis Eng 8(6):522–525

    Google Scholar 

  8. Li GQ, Jia H (2003) Thermal analysis and thermal balance test of CCD assembly. Spacecr Recovery Remote Sens 24(3):15–18

    MathSciNet  Google Scholar 

  9. Luo ZHT, Xu SHY, Chen LH (2008) Thermal control of high-power focal plane apparatus. Opt Precis Eng 16(11):2187–2192

    MathSciNet  Google Scholar 

  10. Zhang BQ, Ma JSH, Pan LF et al (2007) Improvement of high frequency dynamic performance of actuator in optical pickup by finite element and sensitivity methods. Opt Precis Eng 15(7):1002–1008

    Google Scholar 

  11. He J, Zhou ZH, Dong HJ (2010) Design of coefficient-adjustable FBG strain sensors. Opt Precis Eng 18(11):2339–2346

    Google Scholar 

  12. Liu JG, Li J, Hao ZHH (2006) Study on detection sensitivity of APS star tracker. Opt Precis Eng 14(4):553–557

    Google Scholar 

  13. Chen BS, Gu YX, Zhang HW et al (2000) Sensitivity analysis of transient heat conduction with precise time integration method. J Mech Strength 22(4):270–274

    Google Scholar 

  14. Chen BS, Lin W, Gu YX (2003) Adjoint method of heat conduction sensitivity analysis. Chin J Comput Mech 20(4):383–390

    Google Scholar 

  15. Gu YX, Chen BS, Zhang HW et al (2002) A sensitivity analysis method for linear and nonlinear transient heat conduction with precise time integration. Struct Multidisc Optim 24:23–37

    Article  Google Scholar 

  16. Colin E, Etienne S, Pelletier D et al (2005) Application of a sensitivity equation method to turbulent flows with heat transfer. Int J Therm Sci 44:1024–1038

    Article  Google Scholar 

  17. Evandro PJ, João BMSJ (2008) Design sensitivity analysis of nonlinear structures subjected to thermal loads. Comput Struct 86:1369–1384

    Article  Google Scholar 

  18. Dems K, Rousselet B (1999) Sensitivity analysis for transient heat conduction in a solid body-Part I: external boundary modification. Struct Optim 17:36–45

    Google Scholar 

  19. Dems K, Rousselet B (1999) Sensitivity analysis for transient heat conduction in a solid body-Part II: interface modification. Struct Optim 17:46–54

    Google Scholar 

  20. Frankel JI, Keyhani M, Huang MG (2010) Local sensitivity analysis for the heat flux-temperature integral relationship in the half-space. Appl Math Comput 217:363–375

    Article  MathSciNet  MATH  Google Scholar 

  21. Dinesh B, Subrata R (2001) Design sensitivity analysis and optimization of steady fluid-thermal systems. Comput Methods Appl Eng 190:5465–5479

    Article  MATH  Google Scholar 

  22. Babak S, Chan YC (2006) Sensitivity analysis of freestream turbulence parameters on stagnation region heat transfer using a neural network. Int J Heat Fluid Flow 27:1061–1068

    Article  Google Scholar 

  23. Ryszard K (2006) Sensitivity analysis and shape optimization for transient heat conduction with radiation. Int J Heat Mass Transf 49:2033–2043

    Article  MATH  Google Scholar 

  24. Ryszard K (2010) Sensitivity oriented shape optimization of textile composites during coupled heat and mass transport. Int J Heat Mass Transf 53:2385–2392

    Article  MATH  Google Scholar 

  25. Ding YW, Han SH, Li JH (2002) Analysis for thermo-optical sensitivity of space optical window. Opto-Electron Eng 29(5):15–18

    Google Scholar 

  26. Ding YW, Wang L, You ZH et al (2005) Thermo-optical sensitivity and thermal control system for manned spaceship optical windows. J Tsinghua Univ (Sci Tech) 45(11):1489–1492

    Google Scholar 

  27. Lin ZHR (2006) Thermo-optical sensibility analysis of a typical R-C imaging system’s primary optical equipment. Spacecr Recovery Remote Sens 27(3):17–21

    Google Scholar 

  28. Han YG, Xuan YM (2004) Parameter sensitivity analysis for the satellite thermal design. Chin J Comput Phys 21(5):455–460

    Google Scholar 

  29. Han YG, Xuan YM (2006) Parameter sensitivity analysis for the solar array of the satellite thermal design. J Nanjing Univ Sci Technol 30(2):178–181

    Google Scholar 

  30. Yang M, Wu XD, Lv XY et al (2010) Analysis for infrared radiation sensitivity of space satellite based on degradation of thermal control coatings. Opto-Electron Eng 37(7):30–35

    Google Scholar 

  31. Cho YH, Jae HY, Kyun HL et al (2011) Sensitivity analyses of satellite propulsion components with their thermal modelling. Adv Space Res 47:466–479

    Article  Google Scholar 

  32. Tae HK, Dong-Kwon K, Sung JK (2009) Study of the sensitivity of a thermal flow sensor. Int J Heat Mass Transf 52:2140–2144

    Article  MATH  Google Scholar 

  33. Clarke DD, Vasquez VR, Whiting WB et al (2001) Sensitivity and uncertainty analyses of heat-exchanger designs to physical properties estimation. Appl Therm Eng 21:993–1017

    Article  Google Scholar 

  34. Gopi N, Michael GS, Gregory LM et al (2005) Parametric sensitivity study of operating and design variables in wellbore heat exchangers. Geothermics 34:330–346

    Article  Google Scholar 

  35. Guo L, Wu QW, Yan CHX (2011) Thermal design, thermal analysis and verification in space spectral imaging apparatus. Opt Precis Eng 19(6):1272–1280

    Article  Google Scholar 

  36. Li JH, Han SHL, Lu E et al (1999) Thermal analysis and thermal test in space remote-sense camera thermal control design. Opt Precis Eng 7(2):116–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Wu, Qw. & Yan, Cx. Sensitivity analysis of thermal design parameters for focal plane assembly in a space spectral imaging instrument. Heat Mass Transfer 49, 299–308 (2013). https://doi.org/10.1007/s00231-012-1086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1086-7

Keywords

Navigation