Skip to main content
Log in

Angular momenta of relative equilibrium motions and real moment map geometry

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Chenciner and Jiménez-Pérez (Mosc Math J 13(4):621–630, 2013) showed that the range of the spectra of the angular momenta of all the rigid motions of a fixed central configuration in a general Euclidean space form a convex polytope. In this note we explain how this result follows from a general convexity theorem of O’Shea and Sjamaar in real moment map geometry (Math Ann 31:415–457, 2000). Finally, we provide a representation-theoretic description of the pushforward of the normalized measure under the real moment map for Riemannian symmetric pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albouy, A., Chenciner, A.: Le problème des \(n\) corps et les distances mutuelles. Invent. Math. 131, 151–184 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albouy, A., Kaloshin, V.: Finiteness of central configurations of five bodies in the plane. Ann. Math. 176(1), 535–588 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruns, H.: Über die Integrale des Vielkörper-Problems. Acta Math. 11, 25–96 (1887)

    Article  MathSciNet  Google Scholar 

  5. Chenciner, A.: The angular momentum of a relative equilibrium. Discrete Contin. Dyn. Syst. 33(3), 1033–1047 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chenciner, A.: Non-avoided crossings for n-body balanced configurations in \(\mathbb{R}^{3}\) near a central configuration. arXiv:1411.6935 (2014)

  7. Chenciner, A., Leclerc, B.: Between two moments. Regul. Chaotic Dyn. 19(3), 289–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chenciner, A., Jiménez-Pérez, H.: Angular momentum and Horn’s problem. Mosc. Math. J. 13(4), 621–630 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)

    Book  MATH  Google Scholar 

  10. Coxeter, H.S.M.: Regular Polytopes. Dover Publications, New York (1973)

    MATH  Google Scholar 

  11. Duistermaat, J.J.: Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution. Trans. Am. Math. Soc. 275(1), 417–429 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dziobek, O.: Über einen merkwürdigen Fall des Vielkörperproblems. Astron. Nach. 152, 33–46 (1899)

    Article  Google Scholar 

  14. Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)

    Google Scholar 

  15. Fomin, S., Fulton, W., Lee, C., Poon, Y.: Eigenvalues, singular values, and Littlewood–Richardson coefficients. Am. J. Math. 127, 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gascheau, M.: Examen d’une classe d’équations différentielles et applications à un cas particulier du problème des trois corps. Comptes Rendus 16, 393–394 (1843)

    Google Scholar 

  17. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping II. Invent. Math. 77(3), 533–546 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hall, G.: Central Configurations in the Planar \(1+n\) Body Problem. Boston University, Boston (1993). (preprint)

    Google Scholar 

  20. Harish-Chandra, : Collected Papers. Springer, Berlin (1983)

  21. Heckman, G.J.: Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67(2), 333–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helgason, S.: Differential Geometry. Lie groups and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  23. Helgason, S.: Groups and Geometric Analysis. Academic Press, New York (1984)

    MATH  Google Scholar 

  24. Julliard-Tosel, E.: Bruns’ theorem: the proof and some generalizations. Celest. Mech. Dyn. Astron. 76(4), 241–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kirwan, F.: Convexity properties of the moment mapping III. Invent. Math. 77(3), 547–552 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lagrange, J.L.: Essai sur le problème des trois corps, Œuvres, vol. 6. Gauthier-Villars (1772)

  27. Lehmann-Filhés, R.: Über zwei Fälle des Vielkörperproblems. Astron. Nach. 127, 137–144 (1891)

    Article  MATH  Google Scholar 

  28. Maxwell, J.C.: Stability of the Motion of Saturn’s Rings. Scientific Papers of James Clerk Maxwell. Cambridge University Press, Cambridge (1890)

    Google Scholar 

  29. Moeckel, R.: Linear stability of relative equilibria with a dominant mass. J. Dyn. Differ. Equ. 6(1), 37–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moeckel, R.: Relative equilibria with clusters of small masses. J. Dyn. Differ. Equ. 9(4), 507–533 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moeckel, R.: Lectures on central configurations. http://www.math.umn.edu/~rmoeckel/notes/CentralConfigurations (2014)

  32. Moulton, F.R.: The straight line solutions of the problem of N bodies. Ann. Math. 12(1), 1–17 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ness, L.: A stratification of the null cone via the moment map. Am. J. Math. 106(6), 1281–1329 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. O’Shea, L., Sjamaar, R.: Moment maps and Riemannian symmetric pairs. Math. Ann. 31, 415–457 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars (1892/1893/1899)

  36. Routh, E.J.: On Laplace’s three particles with a supplement on the stability of their motion. Proc. Lond. Math. Soc. 6, 86–97 (1875)

    MathSciNet  MATH  Google Scholar 

  37. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics, Grundlehren Math. Wissenschaften, vol. 187. Springer, Berlin (1971)

  38. Smale, S.: Problems on the Nature of Relative Equilibria in Celestial Mechanics, Lecture Notes in Mathematics, vol. 197, pp. 194–198. Springer, Berlin (1970)

    Google Scholar 

  39. Wintner, A.: The Analytic Foundations of Celestial Mechanics, Princeton Mathematical Series, vol. 5. Princeton University Press, Princeton (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heckman, G., Zhao, L. Angular momenta of relative equilibrium motions and real moment map geometry. Invent. math. 205, 671–691 (2016). https://doi.org/10.1007/s00222-015-0644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0644-2

Keywords

Navigation