Skip to main content
Log in

Rotational symmetry of self-similar solutions to the Ricci flow

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let (M,g) be a three-dimensional steady gradient Ricci soliton which is non-flat and κ-noncollapsed. We prove that (M,g) is isometric to the Bryant soliton up to scaling. This solves a problem mentioned in Perelman’s first paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G., Chow, B.: A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds. Calc. Var. Partial Differ. Equ. 23, 1–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brendle, S.: Ricci Flow and the Sphere Theorem. Graduate Studies in Mathematics, vol. 111. Am. Math. Soc., Providence (2010)

    MATH  Google Scholar 

  3. Bryant, R.L.: Ricci flow solitons in dimension three with SO(3)-symmetries. Available at www.math.duke.edu/~bryant/3DRotSymRicciSolitons.pdf

  4. Cao, H.D.: Recent progress on Ricci solitons. arXiv:0908.2006

  5. Cao, H.D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Am. Math. Soc. 364, 2377–2391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, H.D., Catino, G., Chen, Q., Mantegazza, C., Mazzieri, L.: Bach flat gradient steady Ricci solitons. arXiv:1107.4591

  7. Chen, B.L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82, 363–382 (2009)

    MATH  Google Scholar 

  8. Chen, X.X., Wang, Y.: On four-dimensional anti-self-dual gradient Ricci solitons. arXiv:1102.0358

  9. Guo, H.: Area growth rate of the level surface of the potential function on the 3-dimensional steady Ricci soliton. Proc. Am. Math. Soc. 137, 2093–2097 (2009)

    Article  MATH  Google Scholar 

  10. Gursky, M.: The Weyl functional, de Rham cohomology, and Kähler–Einstein metrics. Ann. Math. 148, 315–337 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Hamilton, R.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, vol. II, pp. 7–136. International Press, Somerville (1995)

    Google Scholar 

  13. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  14. Hopf, E.: On S. Bernstein’s theorem on surfaces z(x,y) of nonpositive curvature. Proc. Am. Math. Soc. 1, 80–85 (1950)

    MathSciNet  MATH  Google Scholar 

  15. Ionescu, A., Klainerman, S.: On the uniqueness of smooth stationary black holes in vacuum. Invent. Math. 175, 35–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ivey, T.: New examples of complete Ricci solitons. Proc. Am. Math. Soc. 122, 241–245 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kazdan, J., Warner, F.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 14–47 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lieberman, G.: Second Order Parabolic Differential Equations. World Scientific, River Edge (1996)

    Book  MATH  Google Scholar 

  19. Morgan, J., Tian, G.: Ricci Flow and the Poincaré Conjecture. Am. Math. Soc., Providence (2007)

    MATH  Google Scholar 

  20. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159

  21. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109

  22. Perelman, G.: Finite extinction time for solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245

  23. Simon, L.: Isolated singularities of extrema of geometric variational problems. In: Harmonic Mappsing and Minimal Immersions, Montecatini, 1984. Lectures Notes in Mathematics, vol. 1161, pp. 206–277 (1985)

    Chapter  Google Scholar 

  24. Simon, L., Solomon, B.: Minimal hypersurfaces asymptotic to quadratic cones in ℝn+1. Invent. Math. 86, 535–551 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Struwe, M.: Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa, Ser. V 1, 247–274 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Topping, P.: Lectures on the Ricci Flow. London Mathematical Society Lecture Notes Series, vol. 325. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  27. Wang, X.J.: Convex solutions to the mean curvature flow. Ann. Math. 173, 1185–1239 (2011)

    Article  MATH  Google Scholar 

  28. Zhang, Z.H.: On the completeness of gradient Ricci solitons. Proc. Am. Math. Soc. 137, 2755–2759 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Professors Huai-Dong Cao, Gerhard Huisken, Sergiu Klainerman, Leon Simon, Brian White, for discussions. The author is grateful to Meng Zhu for comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Brendle.

Additional information

The author was supported in part by the National Science Foundation under grants DMS-0905628 and DMS-1201924.

Appendix: The eigenvalues of some elliptic operators on S 2

Appendix: The eigenvalues of some elliptic operators on S 2

In this section, we collect some well-known results concerning the eigenvalues of certain elliptic operators on S 2. In the following, \(g_{S^{2}}\) will denote the standard metric on S 2 with constant Gaussian curvature 1.

Proposition A.1

Let σ be a one-form on S 2 satisfying

$$\varDelta _{S^2} \sigma+ \mu \sigma= 0, $$

where \(\varDelta _{S^{2}}\) denotes the rough Laplacian and μ∈(−∞,1) is a constant. Then σ=0.

Proof

We can find a real-valued function α and a two-form ω such that σ=+d ω. Using the Bochner formula for one-forms, we obtain

Consequently, the function \(\varDelta _{S^{2}} \alpha+ (\mu+1) \alpha\) is constant, and the two-form \(\varDelta _{S^{2}} \omega+ (\mu+1) \omega\) is a constant multiple of the volume form. Since μ+1<2, we conclude that α is constant and ω is a constant multiple of the volume form. Thus, σ=0, as claimed. □

Proposition A.2

Let χ be a symmetric (0,2)-tensor on S 2 satisfying

$$\varDelta _{S^2} \chi- 4 \overset{\mathrm{o}}{\chi} + \mu \chi= 0, $$

where \(\overset{\mathrm{o}}{\chi}\) denotes the trace-free part of χ and μ∈(−∞,2) is a constant. Then χ is a constant multiple of \(g_{S^{2}}\).

Proof

The trace of χ satisfies

$$\varDelta _{S^2}(\operatorname {\mathrm {tr}}\chi) + \mu (\operatorname {\mathrm {tr}}\chi) = 0. $$

Since μ<2, we conclude that \(\operatorname {\mathrm {tr}}\chi\) is constant. Moreover, the trace-free part of χ satisfies

$$\varDelta _{S^2} \overset{\mathrm{o}}{\chi} + (\mu- 4) \overset{\mathrm{o}}{\chi} = 0. $$

Since μ−4<0, it follows that \(\overset{\mathrm{o}}{\chi} = 0\). Putting these facts together, the assertion follows. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brendle, S. Rotational symmetry of self-similar solutions to the Ricci flow. Invent. math. 194, 731–764 (2013). https://doi.org/10.1007/s00222-013-0457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0457-0

Keywords

Navigation