Skip to main content
Log in

Deformations of the hemisphere that increase scalar curvature

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Consider a compact Riemannian manifold M of dimension n whose boundary ∂M is totally geodesic and is isometric to the standard sphere S n−1. A natural conjecture of Min-Oo asserts that if the scalar curvature of M is at least n(n−1), then M is isometric to the hemisphere \(S_{+}^{n}\) equipped with its standard metric. This conjecture is inspired by the positive mass theorem in general relativity, and has been verified in many special cases.

In this paper, we construct counterexamples to Min-Oo’s Conjecture in dimension n≥3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16, 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartnik, R.: Energy in general relativity. In: Tsing Hua Lectures on Geometry and Analysis, Hsinchu, 1990–1991, pp. 5–27. Intl. Press, Cambridge (1997)

    Google Scholar 

  4. Besse, A.: Einstein Manifolds. Classics in Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Boualem, H., Herzlich, M.: Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces. Ann. Sc. Norm. Super. Pisa, Ser. V 1, 461–469 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bray, H.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. PhD Thesis, Stanford University (1997)

  7. Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Bray, H., Brendle, S., Eichmair, M., Neves, A.: Area-minimizing projective planes in three-manifolds. Commun. Pure Appl. Math. 63, 1237–1247 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Bray, H., Brendle, S., Neves, A.: Rigidity of area-minimizing two-spheres in three-manifolds. Commun. Anal. Geom. (to appear)

  10. Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. 21, 951–979 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brendle, S.: Ricci Flow and the Sphere Theorem. Graduate Studies in Mathematics, vol. 111. Am. Math. Soc., Providence (2010)

    MATH  Google Scholar 

  12. Brendle, S.: Rigidity phenomena involving scalar curvature. Surv. Differ. Geom. (to appear)

  13. Brendle, S., Marques, F.C.: Blow-up phenomena for the Yamabe equation II. J. Differ. Geom. 81, 225–250 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Brendle, S., Marques, F.C.: Scalar curvature rigidity of geodesic balls in S n. arxiv:1005.2782

  15. Chruściel, P.T., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212, 231–264 (2003)

    Article  Google Scholar 

  16. Chruściel, P.T., Nagy, G.: The mass of spacelike hypersurfaces in asymptotically anti-de-Sitter space-times. Adv. Theor. Math. Phys. 5, 697–754 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eichmair, M.: The size of isoperimetric surfaces in 3-manifolds and a rigidity result for the upper hemisphere. Proc. Am. Math. Soc. 137, 2733–2740 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Math. J. 42, 519–547 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gromov, M.: Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In: Functional Analysis on the Eve of the 21st Century, Vol. II, New Brunswick, 1993. Progr. Math., vol. 132, pp. 1–213. Birkhäuser, Boston (1996)

    Google Scholar 

  21. Gromov, M., Lawson, H.B.: Spin and scalar curvature in the presence of a fundamental group. Ann. Math. 111, 209–230 (1980)

    Article  MathSciNet  Google Scholar 

  22. Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. IHÉS 58, 83–196 (1983)

    MathSciNet  MATH  Google Scholar 

  23. Hang, F., Wang, X.: Rigidity and non-rigidity results on the sphere. Commun. Anal. Geom. 14, 91–106 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Hang, F., Wang, X.: Rigidity theorems for compact manifolds with boundary and positive Ricci curvature. J. Geom. Anal. 19, 628–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Herzlich, M.: Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces. Math. Ann. 312, 641–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, L., Wu, D.: Rigidity theorems on hemispheres in non-positive space forms. Commun. Anal. Geom. 18, 339–363 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996. Lecture Notes in Mathematics, vol. 1713, pp. 45–84. Springer, Berlin (1999)

    Chapter  Google Scholar 

  28. Li, P.: Lecture Notes on Geometric Analysis. Lecture Notes Series, vol. 6. Seoul National University, Seoul (1993)

    MATH  Google Scholar 

  29. Listing, M.: Scalar curvature on compact symmetric spaces. arxiv:1007.1832

  30. Llarull, M.: Sharp estimates and the Dirac operator. Math. Ann. 310, 55–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lohkamp, J.: Metrics of negative Ricci curvature. Ann. Math. 140, 655–683 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313, 385–407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miao, P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)

    MathSciNet  Google Scholar 

  34. Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Min-Oo, M.: Scalar curvature rigidity of certain symmetric spaces. In: Geometry, Topology, and Dynamics, Montreal, 1995. CRM Proc. Lecture Notes, vol. 15, pp. 127–137. Am. Math. Soc., Providence (1998)

    Google Scholar 

  36. Parker, T., Taubes, C.H.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds of non-negative scalar curvature. Ann. Math. 110, 127–142 (1979)

    Article  MathSciNet  Google Scholar 

  39. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28, 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, Y., Tam, L.F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Toponogov, V.: Evaluation of the length of a closed geodesic on a convex surface. Dokl. Akad. Nauk SSSR 124, 282–284 (1959)

    MathSciNet  MATH  Google Scholar 

  42. Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57, 273–299 (2001)

    MATH  Google Scholar 

  43. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Brendle.

Additional information

The first author was supported in part by the National Science Foundation under grant DMS-0905628. The second author was supported by CNPq-Brazil, FAPERJ, and the Stanford Department of Mathematics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brendle, S., Marques, F.C. & Neves, A. Deformations of the hemisphere that increase scalar curvature. Invent. math. 185, 175–197 (2011). https://doi.org/10.1007/s00222-010-0305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0305-4

Keywords

Navigation