Skip to main content
Log in

Variational Description of Gibbs-non-Gibbs Dynamical Transitions for the Curie-Weiss Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We perform a detailed study of Gibbs-non-Gibbs transitions for the Curie-Weiss model subject to independent spin-flip dynamics (“infinite-temperature” dynamics). We show that, in this setup, the program outlined in van Enter et al. (Moscow Math J 10:687–711, 2010) can be fully completed, namely, Gibbs-non-Gibbs transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the magnetization conditioned on their endpoint. As a consequence, we show that the time-evolved model is non-Gibbs if and only if this set is not a singleton for some value of the final magnetization. A detailed description of the possible scenarios of bifurcation is given, leading to a full characterization of passages from Gibbs to non-Gibbs and vice versa with sharp transition times (under the dynamics, Gibbsianness can be lost and can be recovered).

Our analysis expands the work of Ermolaev and Külske (J Stat Phys 141:727–756, 2010), who considered zero magnetic field and finite-temperature spin-flip dynamics. We consider both zero and non-zero magnetic field, but restricted to infinite-temperature spin-flip dynamics. Our results reveal an interesting dependence on the interaction parameters, including the presence of forbidden regions for the optimal trajectories and the possible occurrence of overshoots and undershoots in time of the initial magnetization of the optimal trajectories. The numerical plots provided are obtained with the help of MATHEMATICA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dereudre D., Roelly S.: Propagation of Gibbsianness for infinite-dimensional gradient Brownian diffusions. J. Stat. Phys. 121, 511–551 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. van Enter A.C.D., Fernández R., den Hollander F., Redig F.: Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures. Commun. Math. Phys. 226, 101–130 (2002)

    Article  ADS  MATH  Google Scholar 

  3. van Enter A.C.D., Fernández R., den Hollander F., Redig F.: A large-deviation view on dynamical Gibbs-non-Gibbs transitions. Moscow Math. J. 10, 687–711 (2010)

    MATH  Google Scholar 

  4. van Enter A.C.D., Külske C., Opoku A.A., Ruszel W.M.: Gibbs-non-Gibbs properties for n-vector lattice and mean-field models. Braz. J. Prob. Stat. 24, 226–255 (2010)

    Article  MATH  Google Scholar 

  5. van Enter A.C.D., Ruszel W.M.: Loss and recovery of Gibbsianness for XY spins in a small external field. J. Math. Phys. 49, 125208 (2008)

    Article  MathSciNet  Google Scholar 

  6. van Enter A.C.D., Ruszel W.M.: Gibbsianness versus non-Gibbsianness of time-evolved planar rotor models. Stoch. Proc. Appl. 119, 1866–1888 (2010)

    Article  Google Scholar 

  7. Ermolaev V., Külske C.: Low-temperature dynamics of the Curie-Weiss model: Periodic orbits, multiple histories, and loss of Gibbsianness. J. Stat. Phys. 141, 727–756 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. den Hollander F.: Large Deviations. Fields Institute Monographs 14,Providence, RI: Amer. Math. Soc., 2000

  9. Külske C., Le Ny A.: Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry. Commun. Math. Phys. 271, 431–454 (2007)

    Article  ADS  MATH  Google Scholar 

  10. Külske C., Opoku A.A.: The posterior metric and the goodness of Gibbsianness for transforms of Gibbs measures. Elect. J. Prob. 13, 1307–1344 (2008)

    MATH  Google Scholar 

  11. Külske C., Opoku A.A.: Continuous mean-field models: limiting kernels and Gibbs properties of local transforms. J. Math. Phys. 49, 125215 (2008)

    Article  MathSciNet  Google Scholar 

  12. Külske C., Redig F.: Loss without recovery of Gibbsianness during diffusion of continuous spins. Probab. Theory Relat. Fields 135, 428–456 (2006)

    Article  MATH  Google Scholar 

  13. Le Ny A., Redig F.: Short time conservation of Gibbsianness under local stochastic evolutions. J. Stat. Phys. 109, 1073–1090 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Liggett, T.M.: Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276, New York: Springer, 1985

  15. Opoku A.A.: On Gibbs Properties of Transforms of Lattice and Mean-Field Systems. PhD thesis, Groningen University, 2009

  16. Redig F., Roelly S., Ruszel W.M.: Short-time Gibbsianness for infinite-dimensional diffusions with space-time interaction. J. Stat. Phys. 138, 1124–1144 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fernández.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, R., den Hollander, F. & Martínez, J. Variational Description of Gibbs-non-Gibbs Dynamical Transitions for the Curie-Weiss Model. Commun. Math. Phys. 319, 703–730 (2013). https://doi.org/10.1007/s00220-012-1646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1646-1

Keywords

Navigation