Skip to main content
Log in

A Planar Calculus for Infinite Index Subfactors

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop an analog of Jones’ planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns’ results on rotations and extremality for infinite index subfactors. These results are obtained without Jones’ basic construction and the resulting Jones projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisch, D.: Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In: Operator Algebras and Their Applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., 13, Providence, RI: Amer. Math. Soc., 1997, pp. 13-63

  2. Bigelow, S., Morrison S., Peters E., Snyder N., Constructing the extended Haagerup planar algebra. Acta. Math. 209, 29–82 (2012)

  3. Burns, M.: Subfactors, planar algebras, and rotations, Ph.D. thesis at the University of California, Berkeley, 2003, http://arxiv.org/abs/1111.1362v1 [math,OA], 2011

  4. Connes, A.: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann. Ann. Inst. Fourier (Grenoble) 24 , no. 4, x, 121–155 (1974)

  5. Connes A.: On the spatial theory of von Neumann algebras. J. Funct. Anal. 35(2), 153–164 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enock M., Nest R.: Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras. J. Funct. Anal. 137(2), 466–543 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Enock M., Vallin J.-M.: Inclusions of von Neumann algebras, and quantum groupoids. J. Funct. Anal. 172(2), 249–300 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goodman, F. M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras. Mathematical Sciences Research Institute Publications, 14. New York: Springer-Verlag, 1989

  9. Guionnet, A., Jones, V.F.R., Shlyakhtenko, D.: Random matrices, free probability, planar algebras and subfactors. In: Quanta of maths, Clay Math. Proc., Vol. 11, Providence, RI: Amer. Math. Soc., 2010, pp. 201–239

  10. Haagerup U.: Operator-valued weights in von Neumann algebras. I. J. Funct. Anal. 32(2), 175–206 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herman R.H., Ocneanu A.: Index theory and Galois theory for infinite index inclusions of factors. C. R. Acad. Sci. Paris Sér. I Math. 309(17), 923–927 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Izumi, M., Jones, V. F. R., Morrison, S., Snyder, N.: Subfactors of index less than 5, part 3: quadruple points. Commun. Math. Phys. 316, 531–554 (2012)

    Google Scholar 

  13. Izumi M., Longo R., Popa S.: A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal. 155(1), 25–63 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izumi M.: Application of fusion rules to classification of subfactors. Publ. Res. Inst. Math. Sci. 27(6), 953–994 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Jones, V.F.R.:Planar algebras I. http://arxiv.org/abs/math/9909027v1 [math.QA], 1999

  17. Jones V.F.R., Penneys D.: The embedding theorem for finite depth subfactor planar algebras. Quantum Topol. 2(3), 301–337 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lieberman A.: The structure of certain unitary representations of infinite symmetric groups. Trans. Amer. Math. Soc. 164, 189–198 (1972)

    Article  MathSciNet  Google Scholar 

  19. Morrison S., Penneys D., Peters E., Snyder N.: Subfactors of index less than 5, part 2: triple points. Internat. J. Math. 23(3), 1250016 (2012)

    Article  MathSciNet  Google Scholar 

  20. Morrison, S., Snyder, N.: Subfactors of index less than 5, part 1: the principal graph odometer. Commun. Math. Phys. 312, 1–35 (2012)

    Google Scholar 

  21. Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., Vol. 136, Cambridge: Cambridge Univ. Press, 1988, pp. 119–172

  22. Penneys D.: A cyclic approach to the annular Temperley-Lieb category. J. Knot Theory and its Ramifications 21(6), 1250049 (2012)

    Article  MathSciNet  Google Scholar 

  23. Peters E.: A planar algebra construction of the Haagerup subfactor. Int’l J. Math. 21(8), 987–1045 (2010)

    Article  MATH  Google Scholar 

  24. Popa, S.: Correspondences. INCREST Preprint, 1986.

  25. Popa S.: Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math. 111(2), 375–405 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Popa S.: Classification of amenable subfactors of type II. Acta Math. 172(2), 163–255 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Popa S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Penneys D., Tener J.: Subfactors of index less than 5, part 4: vines. Internat. J. Math. 23(3), 1250017 (2012)

    Article  MathSciNet  Google Scholar 

  29. Sauvageot J.-L.: Sur le produit tensoriel relatif d’espaces de Hilbert. J. Operator Theory 9(2), 237–252 (1983)

    MathSciNet  MATH  Google Scholar 

  30. Sauvageot, J.-L.: Produits tensoriels de Z-modules et applications. In: Operator algebras and their connections with topology and ergodic theory (1983), Lecture Notes in Math., Vol. 1132, Berlin: Springer, 1985, pp. 468–485

  31. Takesaki M., Theory of operator algebras. II. In: Encyclopaedia of Mathematical Sciences, Vol. 125, Berlin: Springer-Verlag, 2003

  32. Yamagami S.: Modular theory for bimodule. J. Funct. Anal. 125(2), 327–357 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penneys.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penneys, D. A Planar Calculus for Infinite Index Subfactors. Commun. Math. Phys. 319, 595–648 (2013). https://doi.org/10.1007/s00220-012-1627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1627-4

Keywords

Navigation