Skip to main content
Log in

Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte–insulator–semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance–voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.

Label-free electrical monitoring of polyelectrolyte multilayer formation by means of a capacitive field-effect sensor consisting of Al-p-Si-SiO2 structure. The consecutive adsorption of oppositely charged polyelectrolyte layers leads to alternating shifts of the capacitance-voltage and constant-capacitance curves, whereas the direction of these shifts correlates with the charge sign of the terminating polyelectrolyte layer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nap R, Gong P, Szleifer I (2006) J Polym Sci B 44:2638–2662

    Article  CAS  Google Scholar 

  2. Decher G, Eckle M, Schmitt J, Struth B (1998) Curr Opin Colloid Interface Sci 3:32–39

    Article  CAS  Google Scholar 

  3. Klitzing R (2006) Phys Chem Chem Phys 8:5012–5033

    Article  Google Scholar 

  4. Schönhoff M (2003) Curr Opin Colloid Interface Sci 8:86–95

    Article  Google Scholar 

  5. Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, Klitzing R, Steitz R (2007) Colloids Surf A 303:14–29

    Article  Google Scholar 

  6. Crespilho FN, Zucolotto V, Oliveira ON, Nart FC (2006) Int J Electrochem Sci 1:194–214

    CAS  Google Scholar 

  7. Siqueira JR, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON, Schöning MJ (2009) J Phys Chem C 113:14765–14770

    Article  CAS  Google Scholar 

  8. Siqueira JR, Abouzar MH, Bäcker M, Zucolotto V, Poghossian A, Oliveira ON, Schöning MJ (2009) Phys Status Solidi A 206:462–467

    Article  Google Scholar 

  9. Liu Y, Cui T (2007) Sensors Actuators B 123:148–152

    Article  CAS  Google Scholar 

  10. Lee SW, Kim BS, Chen S, Shao-Horn Y, Hammond PT (2009) J ACS 131:671–679

    CAS  Google Scholar 

  11. Cai G, Lee W, Min SK, Koo G, Cho BW, Lee SH, Han SH (2009) J Nanosci Nanotechnol 9:7209–7214

    Article  CAS  Google Scholar 

  12. Boudou T, Crouzier T, Ren K, Blin G, Picart C (2010) Adv Mater 22:441–467

    Article  CAS  Google Scholar 

  13. De Geest BG, De Koker S, Sukhorukov GB, Kreft O, Parak WJ, Skirtach AG, Demeester J, De Smedt SC, Hennink WE (2009) Soft Matter 5:282–291

    Article  Google Scholar 

  14. Mansouri S, Winnik FM, Tabrizian M (2009) Expert Opin Drug Discovery 6:585–597

    Article  CAS  Google Scholar 

  15. Noh J, Park S, Boo H, Kim HC, Chung TD (2011) Lab Chip 11:664–671

    Article  CAS  Google Scholar 

  16. Liu J, Herlogsson L, Sawatdee A, Favia P, Sandberg M, Crispin X, Engquist I, Berggren M (2010) Appl Phys Lett 97:103303

    Article  Google Scholar 

  17. Iost RM, Crespilho FN (2012) Biosens Bioelectron 31:1–10

    Article  CAS  Google Scholar 

  18. Abouzar MH, Poghossian A, Siqueira JR, Oliveira ON, Moritz W, Schöning MJ (2010) Phys Status Solidi A 207:884–890

    Article  CAS  Google Scholar 

  19. Park BW, Yoon DY, Kim DS (2010) Biosens Bioelectron 26:1–10

    Article  CAS  Google Scholar 

  20. Wu Z, Guan L, Shen G, Yu R (2002) Analyst 127:391–395

    Article  CAS  Google Scholar 

  21. Dukhin SS, Zimmermann R, Werner C (2008) J Colloid Interface Sci 328:217–226

    Article  CAS  Google Scholar 

  22. Glinel K, Dejugnat C, Prevot M, Schöler B, Schönhoff M, Klitzing R (2007) Colloids Surf A 303:3–13

    Article  CAS  Google Scholar 

  23. Mauser T, Dejugnat C, Sukhorukov GB (2004) Macromol Rapid Commun 25:1781–1785

    Article  CAS  Google Scholar 

  24. Bieker P, Schönhoff M (2010) Macromolecules 43:5052–5059

    Article  CAS  Google Scholar 

  25. Dutta AK, Belfort G (2009) Sensors Actuators B 136:60–65

    Article  CAS  Google Scholar 

  26. Wong JE, Zastrow H, Jaeger W, Klitzing R (2009) Langmuir 25:14061–14070

    Article  CAS  Google Scholar 

  27. Poghossian A, Abouzar MH, Sakkari M, Kassab T, Han Y, Ingebrandt S, Offenhäusser A, Schöning MJ (2006) Sensors Actuators B 11:163–170

    Article  Google Scholar 

  28. Neff PA, Wunderlich BK, Klitzing R, Bausch AR (2007) Langmuir 23:4048–4052

    Article  CAS  Google Scholar 

  29. Neff PA, Naji A, Ecker C, Nickel B, Klitzing R, Bausch AR (2006) Macromolecules 39:463–466

    Article  CAS  Google Scholar 

  30. Vu XT, Eschermann JF, Stockmann R, GhoshMoulick R, Offenhäusser A, Ingebrandt S (2009) Phys Status Solidi A 206:426–434

    Article  CAS  Google Scholar 

  31. Vu XT, Stockmann R, Wolfrum B, Offenhäusser A, Ingebrandt S (2010) Phys Status Solidi A 207:850–857

    Article  CAS  Google Scholar 

  32. Artyukhin AB, Stadermann M, Friddle RW, Stroeve P, Bakajin O, Noy A (2006) Nano Lett 6:2080–2085

    Article  CAS  Google Scholar 

  33. Gorin DA, Yashchenok AM, Manturov AO, Kolesnikova TA, Möhwald H (2009) Langmuir 25:12529–12534

    Article  CAS  Google Scholar 

  34. Schöning MJ, Näther N, Auger V, Poghossian A, Koudelka-Hep M (2005) Sensors Actuators B 108:986–992

    Article  Google Scholar 

  35. Mourzina Y, Mai T, Poghossian A, Ermelenko Y, Yoshinobu T, Vlasov Y, Iwasaki H, Schöning MJ (2003) Electrochim Acta 48:3333–3339

    Article  CAS  Google Scholar 

  36. Poghossian A, Mai DT, Mourzina Y, Schöning MJ (2004) Sensors Actuators B 103:423–428

    Article  CAS  Google Scholar 

  37. Beyer M, Menzel C, Quack R, Scheper T, Schugerl K, Treichel W, Voigt H, Ullrich M, Ferretti R (1994) Biosens Bioelectron 9:17–21

    Article  CAS  Google Scholar 

  38. Yoshinobu T, Ecken H, Poghossian A, Simonis A, Iwasaki H, Lüth H, Schöning MJ (2001) Electroanalysis 13:733–736

    Article  CAS  Google Scholar 

  39. Gun J, Schöning MJ, Abouzar MH, Poghossian A, Katz E (2008) Electroanalysis 20:1748–1753

    Article  CAS  Google Scholar 

  40. Abouzar MH, Poghossian A, Cherstvy AG, Pedraza AM, Ingebrandt S, Schöning MJ (2012) Phys Status Solidi A 209:925–934

    Article  CAS  Google Scholar 

  41. Gun J, Gutkin V, Lev O, Boyen HG, Wagner P, D’Olieslaeger M, Abouzar MH, Poghossian A, Schöning MJ (2011) J Phys Chem C 115:4439–4445

    Article  CAS  Google Scholar 

  42. Poghossian A, Malzahn K, Abouzar MH, Mehndiratta P, Katz E, Schöning MJ (2011) Electrochim Acta 56:9661–9665

    Article  CAS  Google Scholar 

  43. Garyfallou GZ, de Smet LCPM, Sudhölter EJR (2012) Sensors Actuators B 168:207–213

    Article  CAS  Google Scholar 

  44. Peng C, Thio YS, Gerhardt RA (2012) Langmuir 28:84–91

    Article  CAS  Google Scholar 

  45. Bosio V, Dubreuil F, Bogdanovic G, Fery A (2004) Colloids Surf A 243:147–155

    Article  CAS  Google Scholar 

  46. Smith RN, McCormick M, Barrett CJ, Reven L, Spiess HW (2004) Macromolecules 37:4830–4838

    Article  CAS  Google Scholar 

  47. Poghossian A (1997) Sensors Actuators B 44:551–553

    Article  CAS  Google Scholar 

  48. Yoo D, Shiratori S, Rubner M (1998) Macromolecules 31:4309–4318

    Article  CAS  Google Scholar 

  49. Adamczyk Z, Zembala M, Kolasinska M, Warszynski P (2007) Colloids Surf A 302:455–460

    Article  CAS  Google Scholar 

  50. Israelachvili J (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  51. Durstock MF, Rubner M (2001) Langmuir 17:7865–7872

    Article  CAS  Google Scholar 

  52. Poghossian A, Cherstvy A, Ingebrandt S, Offenhäusser A, Schöning MJ (2005) Sensors Actuators B 111–112:470–480

    Article  Google Scholar 

  53. Kuga S, Yang JH, Takahashi H, Hirama K, Iwasaki T, Kawarada H (2008) JACS 130:13251–13263

    Article  CAS  Google Scholar 

  54. Butt HJ, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley, Weinheim

    Book  Google Scholar 

  55. Cherstvy AG (2011) Phys Chem Chem Phys 13:9942–9968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.G. Cherstvy gratefully acknowledges the financial support by the Deutsche Forschungsgemeinschaft. The authors thank H.-P. Bochem for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Poghossian.

Additional information

This paper is dedicated to Professor Franz Dickert on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poghossian, A., Weil, M., Cherstvy, A.G. et al. Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices. Anal Bioanal Chem 405, 6425–6436 (2013). https://doi.org/10.1007/s00216-013-6951-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6951-9

Keywords

Navigation