Skip to main content
Log in

Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The interest in compound-specific isotope analysis for product authenticity control and source differentiation in environmental sciences has grown rapidly during the last decade. However, the isotopic analysis of very polar analytes is a challenging task due to the lack of suitable chromatographic separation techniques which can be used coupled to isotope ratio mass spectrometry. In this work, we present the first method to measure carbon isotope compositions of the widely applied herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) by liquid chromatography coupled to isotope ratio mass spectrometry. We demonstrate that this analysis can be carried out either in cation exchange or in reversed-phase separation modes. The reversed-phase separation yields a better performance in terms of resolution compared with the cation exchange method. The measurement of commercial glyphosate herbicide samples show its principal applicability and reveals a wide range of δ13C values between −24 and −34 ‰ for different manufacturers. The absolute minimum amounts required to perform a precise and accurate determination of carbon isotope compositions of glyphosate and AMPA were in the sub-microgram range. The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA. Furthermore, it can be used for contaminant source allocation and product authenticity as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Management Science 61(12):1139–1151. doi:10.1002/ps.1122

    Article  CAS  Google Scholar 

  2. Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2011) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science 68(1):16–30. doi:10.1002/ps.2212

    Article  Google Scholar 

  3. Ermakova IT, Shushkova TV, Leont'evskii AA (2008) Microbial degradation of organophosphonates by soil bacteria. Microbiology 77(5):615–620. doi:10.1134/s0026261708050160

    Article  CAS  Google Scholar 

  4. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science 64(4):441–456. doi:10.1002/ps.1512

    Article  CAS  Google Scholar 

  5. Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37(11):2533–2546. doi:10.1016/s0043-1354(03)00079-4

    Article  CAS  Google Scholar 

  6. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471. doi:10.1111/j.1574-6976.2006.00018.x

    Article  CAS  Google Scholar 

  7. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378(2):283–300. doi:10.1007/s00216-003-2350-y

    Article  CAS  Google Scholar 

  8. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403(9):2471–2491. doi:10.1007/s00216-011-5683-y

    Article  CAS  Google Scholar 

  9. Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12(11):2005–2031. doi:10.1039/c0em00277a

    Article  CAS  Google Scholar 

  10. Kujawinski DM, Stephan M, Jochmann MA, Krajenke K, Haas J, Schmidt TC (2010) Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application. J Environ Monit 12(1):347–354. doi:10.1039/b914514a

    Article  CAS  Google Scholar 

  11. Stalikas CD, Konidari CN (2001) Analytical methods to determine phosphonic and amino acid group-containing pesticides. Journal of Chromatography A 907(1–2):1–19. doi:10.1016/s0021-9673(00)01009-8

    Article  CAS  Google Scholar 

  12. Reinnicke S, Bernstein A, Elsner M (2010) Small and reproducible isotope effects during methylation with trimethylsulfonium hydroxide (TMSH): a convenient derivatization method for isotope. Anal Chem 82(5):2013–2019. doi:10.1021/ac902750s

    Article  CAS  Google Scholar 

  13. Corr LT, Berstan R, Evershed RP (2007) Optimisation of derivatisation procedures for the determination of delta C-13 values of amino acids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 21(23):3759–3771. doi:10.1002/rcm.3252

    Article  CAS  Google Scholar 

  14. Krummen M, Hilkert AW, Juchelka D, Duhr A, Schluter HJ, Pesch R (2004) A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 18(19):2260–2266

    Article  CAS  Google Scholar 

  15. Dunn PJH, Honch NV, Evershed RP (2011) Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid delta(13) C values for palaeodietary and palaeoecological reconstruction. Rapid Communications in Mass Spectrometry 25(20):2995–3011. doi:10.1002/rcm.5174

    Article  CAS  Google Scholar 

  16. Godin J-P, McCullagh JSO (2011) Review: current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). Rapid communications in mass spectrometry: RCM 25(20):3019–3028. doi:10.1002/rcm.5167

    Article  CAS  Google Scholar 

  17. Zhang L, Kujawinski DM, Jochmann MA, Schmidt TC (2011) High-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 25(20):2971–2981. doi:10.1002/rcm.5069

    Article  CAS  Google Scholar 

  18. Heuer V, Elvert M, Tille S, Krummen M, Mollar XP, Hmelo LR, Hinrichs KU (2006) Online delta C-13 analysis of volatile fatty acids in sediment/porewater systems by liquid chromatography-isotope ratio mass spectrometry. Limnology and Oceanography-Methods 4:346–357

    Article  CAS  Google Scholar 

  19. McCullagh JSO (2010) Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 24(5):483–494. doi:10.1002/rcm.4322

    Article  CAS  Google Scholar 

  20. Zhang L, Kujawinski DM, Federherr E, Schmidt TC, Jochmann MA (2012) Caffeine in your drink: natural or synthetic? Anal Chem 84(6):2805–2810. doi:10.1021/ac203197d

    Article  CAS  Google Scholar 

  21. Winfield TW, Bashe WJ, Baker TV (1990) Determination of glyphosate in drinking water by direct-aqueous-injection HPLC, post-column derivatisation, and flourescence detection. Environmental Monitoring Systems, Labratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio

  22. Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15(7):501–519. doi:10.1002/rcm.258

    Article  CAS  Google Scholar 

  23. Elsig J, Leuenberger MC (2010) C-13 and O-18 fractionation effects on open splits and on the ion source in continuous flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 24(10):1419–1430. doi:10.1002/rcm.4531

    Article  CAS  Google Scholar 

  24. Piez KA, Eagle H (1956) C-14 isotope effect on the ion-exchange chromatography of amino acids. J Am Chem Soc 78(20):5284–5287. doi:10.1021/ja01601a035

    Article  CAS  Google Scholar 

  25. Caimi RJ, Brenna JT (1997) Quantitative evaluation of carbon isotopic fractionation during reversed-phase high-performance liquid chromatography. Journal of Chromatography A 757(1–2):307–310. doi:10.1016/s0021-9673(96)00694-2

    Article  CAS  Google Scholar 

  26. Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. Journal of Chromatography A 842(1–2):351–371. doi:10.1016/s0021-9673(98)01057-7

    Article  CAS  Google Scholar 

  27. Voskamp M (2005) Untersuchungen zur Sorption an Huminstoffen: Molekulargewicht und Kohlenstoff-Isotopenfraktionierung. University of Leipzig, Leipzig

    Google Scholar 

  28. Ricci MP, Merritt DA, Freeman KH, Hayes JM (1994) Acquisition and processing of data for isotope-ratio-monitoring mass-spectrometry. Org Geochem 21(6–7):561–571. doi:10.1016/0146-6380(94)90002-7

    Article  CAS  Google Scholar 

  29. Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Communications in Mass Spectrometry 20(24):3639–3648. doi:10.1002/rcm.2784

    Article  CAS  Google Scholar 

  30. Kujawinski DM, Zhang L, Schmidt TC, Jochmann MA (2012) When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry. Anal Chem 84(18):7656–7663. doi:10.1021/ac300116w

    Article  CAS  Google Scholar 

  31. Dill GM, Sammons RD, Feng PCC, Kohn F, Kretzmer K, Mehrsheikh A, Bleeke M, Honegger JL, Farmer D, Wright D, Haupfear EA (2010) Glyphosate: discovery, development, applications, and properties. In: Nandula VK (ed) Glyphosate resistance in crops and weeds. John Wiley & Sons, Inc., pp 1–33. doi:10.1002/9780470634394.ch1

  32. Chamberlain K, Evans AA, Bromilow RH (1996) 1-octanol/water partition coefficient (K-ow) and pK(a) for ionisable pesticides measured by a pH-metric method. Pestic Sci 47(3):265–271. doi:10.1002/(sici)1096-9063(199607)47:3<265::aid-ps416>3.0.co;2-f

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was partly funded by ONEMA (The French National Agency for Water and Aquatic Environments) and BRGM. Additionally, we acknowledge financial support from German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik A. Jochmann.

Additional information

Published in the topical collection Isotope Ratio Measurements: New Developments and Applications with guest editors Klaus G. Heumann and Torsten C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kujawinski, D.M., Wolbert, J.B., Zhang, L. et al. Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Anal Bioanal Chem 405, 2869–2878 (2013). https://doi.org/10.1007/s00216-012-6669-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6669-0

Keywords

Navigation