Skip to main content

Advertisement

Log in

Stir-bar-sorptive extraction, with in-situ deconjugation, and thermal desorption with in-tube silylation, followed by gas chromatography-mass spectrometry for measurement of urinary 4-nonylphenol and 4-tert-octylphenol glucuronides

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method, stir-bar-sorptive extraction (SBSE), with in-situ deconjugation and thermal desorption (TD) with in-tube silylation, followed by gas chromatography-mass spectrometry (GC-MS), for determination of trace amounts of 4-nonylphenol glucuronide (NP-G) and 4-tert-octylphenol glucuronide (OP-G) in human urine, is described. The method involved correction by use of stable isotopically labeled internal standards 4-(1-methyl)octylphenol-d5 (NP-d) and deuterium 4-tert-octylphenol (OP-d). A human urine sample to which β-glucuronidase had been added was extracted for 90 min at 37 °C using a stir bar coated with a 500-μm-thick layer of polydimethylsiloxane (PDMS). NP-G and OP-G were deconjugated, becoming free 4-nonylphenol (NP) and 4-tert-octylphenol (OP). The analytes were then extracted with the PDMS stir bar and the stir bar was subjected to TD with in-tube silylation; this was followed by GC-MS in selected-ion-monitoring (SIM) mode. To optimize the conditions for SBSE with in-situ deconjugation and to test recovery, NP-G and OP-G were synthesized by a biochemical technique in our laboratory. Average recoveries from human urine samples spiked with NP-G and OP-G were between 91.9 and 95.6% with correction using the added surrogate standards. Limits of detection were 0.11 ng mL−1 for NP and 0.01 ng mL−1 for OP. We also measured background levels of NP-G and OP-G in six urine samples from healthy volunteers. NP and OP were detected in the samples at concentrations of 0.62–1.95 ng mL−1 and <0.04–0.18 ng mL−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Comber MHI, Williams TD, Stewart KM (1993) Water Res 27:273–276

    Article  CAS  Google Scholar 

  2. Braun P, Moeder M, Schrader ST, Popp P, Kuschk P, Engewald W (2003) J Chromatogr A 988:41–51

    Article  CAS  Google Scholar 

  3. Espejo R, Valter K, Simona M, Janin Y, Arrizabalaga P (2002) J Chromatogr A 976:335–343

    Article  CAS  Google Scholar 

  4. Jeannot R, Sabik H, Sauvard E, Dagnac T, Dohrendorf K (2002) J Chromatogr A 974:143–159

    Article  CAS  Google Scholar 

  5. Petrovic M, Tavazzi S, Barcelo D (2002) J Chromatogr A 971:37–45

    Article  CAS  Google Scholar 

  6. Petrovic M, Lacorte S, Viana P, Barcelo D (2002) J Chromatogr A 959:15–23

    Article  CAS  Google Scholar 

  7. Petrovic M, Diaz A, Ventura F, Barcelo D (2001) Anal Chem 73:5886–5895

    Article  CAS  Google Scholar 

  8. Ferguson PL, Iden CR, Brownawell BJ (2002) Anal Chem 72:4322–4330

    Article  CAS  Google Scholar 

  9. Diaz A, Ventura F, Galceran MT (2002) Anal Chem 74:3869–3876

    Article  CAS  Google Scholar 

  10. Meesters RJW, Schroeder HFr (2002) Anal Chem 74:3566–3574

    Article  CAS  Google Scholar 

  11. Jobling S, Sumpter JP (1993) Aquat Toxicol 27:361–372

    Article  CAS  Google Scholar 

  12. Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Chem Ecol 8:275–285

    CAS  Google Scholar 

  13. Soto AM, Justicia H, Wray JW, Sonnenschein C (1991) Environ Health Perspect 92:167–173

    Article  CAS  Google Scholar 

  14. Han DH, Denison MS, Tachibana H, Yamada K (2002) Biosci Biotechnol Biochem 66:1479–1487

    Article  CAS  Google Scholar 

  15. Schwaiger J, Mallow U, Ferling H, Knoerr S, Braunbeck TH, Kalbfus W, Negele RD (2002) Aquat Toxicol 59:177–189

    Article  CAS  Google Scholar 

  16. Isobe T, Nakada N, Mato Y, Nishiyama H, Kumata H, Takada H (2002) J Environ Chem 12:621–625

    CAS  Google Scholar 

  17. Kawamura Y, Maehara T, Iijima H, Yamada T (2000) J Food Hyg Soc 41:212–218

    CAS  Google Scholar 

  18. Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T (2002) Environ Sci Technol 36:1676–1680

    Article  CAS  Google Scholar 

  19. Müller S, Schmid P, Schlatter C (1998) Environ Toxicol Pharmacol 5:257–265

    Article  Google Scholar 

  20. Kuklenyik Z, Ekong J, Cutchins CD, Needham LL, Calafat AM (2003) Anal Chem 75:6820–6825

    Article  CAS  Google Scholar 

  21. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL (2005) Environ Health Perspect 113:391–395

    Article  CAS  Google Scholar 

  22. Baltussen E, Sandra P, David F, Cramers C (1999) J Microcolumn Sep 11:737–747

    Article  CAS  Google Scholar 

  23. Kawaguchi M, Ito R, Saito K, Nakazawa H (2006) J Pharm Biomed Anal 40:500–508

    Article  CAS  Google Scholar 

  24. Benijts T, Vercammen J, Dams R, Tuan HP, Lambert W, Sandra P (2001) J Chromatogr B 755:137–142

    Article  CAS  Google Scholar 

  25. Tienpont B, David F, Desmet K, Sandra P (2002) Anal Bioanal Chem 373:46–55

    Article  CAS  Google Scholar 

  26. Kumazawa T, Lee XP, Takano M, Seno H, Arinobu T, Ishii A, Suzuki O, Sato K (2002) Jpn J Forensic Toxicol 20:295–302

    CAS  Google Scholar 

  27. Kawaguchi M, Inoue K, Yoshimura M, Ito R, Sakui N, Nakazawa H (2004) Anal Chim Acta 505:217–222

    Article  CAS  Google Scholar 

  28. Kawaguchi M, Inoue K, Sakui N, Ito R, Izumi S, Makino T, Okanouchi N, Nakazawa H (2004) J Chromatogr B 799:119–125

    Article  CAS  Google Scholar 

  29. Kawaguchi M, Inoue K, Yoshimura M, Ito R, Sakui N, Okanouchi N, Nakazawa H (2004) J Chromatogr B 805:41–48

    Article  CAS  Google Scholar 

  30. Kawaguchi M, Inoue K, Yoshimura M, Sakui N, Okanouchi N, Ito R, Yoshimura Y, Nakazawa H (2004) J Chromatogr A 1041:19–26

    Article  CAS  Google Scholar 

  31. Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Inoue K, Saito K, Nakazawa H (2004) J Chromatogr A 1049:1–8

    Article  CAS  Google Scholar 

  32. Kawaguchi M, Takahashi S, Seshimo F, Sakui N, Okanouchi N, Ito R, Inoue K, Yoshimura Y, Izumi S, Makino T, Nakazawa H (2004) J Chromatogr A 1046:83–88

    Article  CAS  Google Scholar 

  33. Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H. Anal Chim Acta 533:57–65

  34. Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Izumi S, Makino T, Nakazawa H (2005) J Chromatogr B 820:49–57

    Article  CAS  Google Scholar 

  35. Kawaguchi M, Ito R, Endo N, Sakui N, Okanouchi N, Saito K, Sato N, Shiozaki T, Nakazawa H (2006) Anal Chim Acta 557:272–277

    Article  CAS  Google Scholar 

  36. Desmet K, Tienpont B, Sandra P (2003) Chromatographia 57:681–685

    Article  CAS  Google Scholar 

  37. Kawaguchi M, Ito R, Hayatsu Y, Nakata H, Sakui N, Okanouchi N, Saito K, Yokota H, Izumi S, Makino T, Nakazawa H (2006) J Pharm Biomed Anal 40:82–87

    Article  CAS  Google Scholar 

  38. Kuch HM, Ballschmiter K (2001) Environ Sci Technol 35:3201–3206

    Article  CAS  Google Scholar 

  39. Jeannot R, Sabik H, Sauvard E, Dangac T, Dohrendorf K (2002) J Chromatogr A 974:143–159

    Article  CAS  Google Scholar 

  40. Espejo R, Valter K, Simona M, Janin Y, Arrizabalaga P (2002) J Chromatogr A 976:335–343

    Article  CAS  Google Scholar 

  41. Helaleh MIH, Takabayashi Y, Fujii S, Korenaga T (2001) Anal Chim Acta 428:227–234

    Article  CAS  Google Scholar 

  42. Chalaux N, Bayona JM, Albaigés J (1994) J Chromatogr A 686:275–281

    Article  CAS  Google Scholar 

  43. Li D, Park J, Oh JR (2001) Anal Chem 73:3089–3095

    Article  CAS  Google Scholar 

  44. Ito N, Tao H, Ibusuki T (2006) Anal Chim Acta 555:201–209

    Article  CAS  Google Scholar 

  45. Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) J Chromatogr A 1062:23–29

    Article  CAS  Google Scholar 

  46. Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Nakazawa H (2006) J Chromatogr A 1105:140–147

    Article  CAS  Google Scholar 

  47. Yokota H, Iwano H, Endo M, Kobayashi T, Inoue H, Ikushiro S, Yuasa A (1999) Biochem J 340:405–409

    Article  CAS  Google Scholar 

  48. Yokota H, Miyashita N, Yuasa A (2002) Life Sci 71:887–898

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Health Sciences Research grants from the Ministry of Health, Labour and Welfare of Japan, Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists, Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, and The Hoshi University Otani Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Nakazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaguchi, M., Ito, R., Sakui, N. et al. Stir-bar-sorptive extraction, with in-situ deconjugation, and thermal desorption with in-tube silylation, followed by gas chromatography-mass spectrometry for measurement of urinary 4-nonylphenol and 4-tert-octylphenol glucuronides. Anal Bioanal Chem 388, 391–398 (2007). https://doi.org/10.1007/s00216-007-1225-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1225-z

Keywords

Navigation