Skip to main content
Log in

The stability of the double amino acid against decarboxylation in gas and aqueous phases

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The double amino acid (DAA) molecule ((NH2)2C(COOH)2) whose existence was recently proposed is investigated regarding its stability against the unimolecular decarboxylation process in both gas and aqueous phases. The results of the ab initio CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ calculations indicate that the spontaneous detachment of carbon dioxide from DAA molecule (regardless of the reaction path chosen) should not be considered as operative despite the fact that the decarboxylation process leading to the most stable products is expected to be thermodynamically slightly favorable (by less than 2 kcal/mol in both gas and aqueous phases). The adequate unimolecular reaction mechanisms of the possible DAA decarboxylation processes are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D (2008) Amino Acids 35:665–672

    Article  CAS  Google Scholar 

  2. Manna P, Sinha M, Sil PC (2009) Amino Acids 36:417–428

    Article  CAS  Google Scholar 

  3. Sako Y, Goto Y, Murakami H, Suga H (2008) ACS Chem Biol 3:241–249

    Article  CAS  Google Scholar 

  4. Rogers JM, Suga H (2015) Org Biomol Chem 13:9353–9363

    Article  CAS  Google Scholar 

  5. Freza S, Marchaj M, Skurski P (2014) Chem Phys Lett 599:34–37

    Article  CAS  Google Scholar 

  6. Freza S (2016) Theor Chem Acc 135:146

    Article  Google Scholar 

  7. Alexandrova AN, Jorgensen WL (2011) J Phys Chem B 115:13624–13632

    Article  CAS  Google Scholar 

  8. Li J, Brill TB (2003) J Phys Chem A 107:5993–5997

    Article  CAS  Google Scholar 

  9. Li J, Brill TB (2003) J Phys Chem A 107:2667–2673

    Article  CAS  Google Scholar 

  10. Li J, Brill TB (2003) J Phys Chem A 107:5987–5992

    Article  CAS  Google Scholar 

  11. Snider MJ, Wolfenden R (2000) J Am Chem Soc 122:11507–11508

    Article  CAS  Google Scholar 

  12. Boto A, Hernandez R, Suarez E (2000) J Org Chem 65:4930–4937

    Article  CAS  Google Scholar 

  13. Steffen LK, Glass RS, Sabahi M, Wilson GS, Schoneich C, Mahling S, Asmus KD (1991) J Am Chem Soc 113:2141–2145

    Article  CAS  Google Scholar 

  14. Bonifačić M, Štefanić I, Hug GL, Armstrong DA, Asmus KD (1998) J Am Chem Soc 120:9930–9940

    Article  Google Scholar 

  15. Callahan BP, Wolfenden R (2004) J Am Chem Soc 126:4514–4515

    Article  CAS  Google Scholar 

  16. Xiang Z (2013) J Mol Sruct 1049:149–156

    Article  CAS  Google Scholar 

  17. Xiang Z (2013) Comput Theor Chem 1006:1–8

    Article  CAS  Google Scholar 

  18. Burger E, Tunge J (2006) J Am Chem Soc 128:10002–10003

    Article  CAS  Google Scholar 

  19. Boto A, Hernández R, Suárez E (2000) Tetrahedron Lett 41:2899–2902

    Article  CAS  Google Scholar 

  20. Boto A, Hernández R, Leon Y, Murguia JR, Rodriguez-Afons A (2004) Tetrahedron Lett 45:6841–6845

    Article  CAS  Google Scholar 

  21. Liu D, Hwang CC, Cook PF (2002) Biochemistry 41:12200–12203

    Article  CAS  Google Scholar 

  22. Van Poelje PD, Snell EE (1990) Annu Rev Biochem 59:29–59

    Article  Google Scholar 

  23. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  24. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  25. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  26. Miertuš S, Scrocco E, Tomasi J (1992) Chem Phys 55:117–129

    Article  Google Scholar 

  27. Miertuš S, Tomasi J (1982) Chem Phys 65:239–245

    Article  Google Scholar 

  28. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  29. Frisch MJ et al (2009) Gaussian09 (Rev.D.01). Gaussian Inc., Wallingford

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Polish Ministry of Science and Higher Education Grant No. DS 530-8375-D499-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Freza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freza, S. The stability of the double amino acid against decarboxylation in gas and aqueous phases. Theor Chem Acc 136, 7 (2017). https://doi.org/10.1007/s00214-016-2031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2031-5

Keywords

Navigation