Skip to main content
Log in

A high density linkage disequilibrium mapping in 14 noradrenergic genes: evidence of association between SLC6A2, ADRA1B and ADHD

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Pharmacological evidence suggests the importance of noradrenergic and other monoaminergic neurotransmitters in the aetiology and treatment of attention deficit hyperactivity disorder (ADHD). Until recently, the genes of the noradrenergic pathway were not intensively investigated in ADHD compared to dopaminergic and serotonergic candidates. In this study, 91 SNP markers of 14 noradrenergic genes (an average density of one SNP per 4.5 kbp) were examined in ADHD samples from Ireland and Australia. Although suggestive evidence of association (nominal p ≤ 0.05) with the genes SLC6A2, ADRA1A, ADRA1B and ADRA2B was observed, none remained significant after permutation adjustments. In contrast, haplotype analyses demonstrated a significant association between ADHD and a SLC6A2 haplotype comprising the markers rs36009, rs1800887, rs8049681, rs2242447 and rs9930182 (χ2 = 9.39, p-corrected = 0.019, OR = 1.51). A rare ADRA1B haplotype made of six SNPs (rs2030373, rs6884105, rs756275, rs6892282, rs6888306 and rs13162302) was also associated (χ2 = 7.79, p-corrected = 0.042 OR = 2.74) with the disorder. These findings provide evidence of a contribution of the noradrenaline system to the genetic aetiology of ADHD. The observed haplotype association signals may be driven by as yet unidentified functional risk variants in or around the associated regions. Functional genomic analysis is warranted to determine the biological mechanism of the observed association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albayrak O, Friedel S, Schimmelmann BG, Hinney A, Hebebrand J, J Neural Transm (2008) Genetic aspects in attention-deficit hyperactivity disorder. J Neural Transm 15(2):305–315, Review

    Article  Google Scholar 

  • Angold A, Prendergast M, Cox A, Harrington R, Simonoff E, Rutter M (1995) The child and adolescent psychiatric assessment (CAPA). Psychol Med 25(4):739–753

    Article  PubMed  CAS  Google Scholar 

  • Amara S, Kuhar M (1993) Neurotransmitter transporters: recent progress. Ann Rev Neurosci 16:73–93

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46(9):1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Barr CL, Kroft J, Feng Y, Wigg K, Roberts W, Malone M, Ickowicz A, Schachar R, Tannock R, Kennedy JL (2002) The norepinephrine transporter gene and attention-deficit hyperactivity disorder. Am J Med Genet (Neuropsychiatr Genet) 114(3):255–259

    Article  Google Scholar 

  • Biederman J, Heiligenstein JH, Faries DE, Galil N, Dittmann R, Emslie GJ, Kratochvil CJ, Laws HF, Schuh KJ, Atomoxetine ADHD Study Group (2002) Efficacy of atomoxetine versus placebo in school-age girls with attention-deficit/hyperactivity disorder. Pediatrics 110(6):75

    Article  Google Scholar 

  • Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, Clasen LS, Sharp WS, Inoff-Germain G, Wavrant-De Vrièze F, Arcos-Burgos M, Straub RE, Hardy JA, Castellanos X, Rapoport JL (2005) Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B (Neuropsychiatr Genet) 134B(1):67–72

    Article  Google Scholar 

  • Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Aneey R, Franke B, Gill M, Ebstein R et al (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953

    Article  PubMed  CAS  Google Scholar 

  • Caballero J, Nahata MC (2003) Atomoxetine hydrochloride for the treatment of attention-deficit/hyperactivity disorder. Clin Ther 25(12):3065–3083

    Article  PubMed  CAS  Google Scholar 

  • Comings DE, Gade-Andavolu R, Gonzalez N, Blake H, Wu S, MacMurray JP (1999) Additive effect of three noradrenergic genes (ADRA2a, ADRA2C, DBH) on attention-deficit hyperactivity disorder and learning disabilities in Tourette syndrome subjects. Clin Genet 55(3):160–172

    Article  PubMed  CAS  Google Scholar 

  • Daly G, Hawi Z, Fitzgerald M, Gill M (1999) Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol Psychiatry M 4(2):192–196

    Article  CAS  Google Scholar 

  • Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ (2002) Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther 301(3):1097–1102

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Muglia P, Jain U, Kennedy JL (2004) No evidence of linkage or association between the norepinephrine transporter (NET) gene MnlI polymorphism and adult ADHD. Am J Med Genet (Neuropsychiatr Genet) 124B(1):38–40

    Article  Google Scholar 

  • Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP (2002) Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22(7):2873–2884

    PubMed  CAS  Google Scholar 

  • Eisenberg J, Mei-Tal G, Steinberg A, Tartakovsky E, Zohar A, Gritsenko I, Nemanov L, Ebstein RP (1999) Haplotype relative risk study of COMT and attention deficit hyperactivity disorder (ADHD), association of the high-enzyme activity Val allele with ADHD impulsive hyperactive phenotype. Am J Med Genet 88(5):497–502

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Biederman J (2002) Pathophysiology of attention deficit hyperactivity disorder. In: Davis K, Charney D, Coyle JT, Nemeroff C (eds) ACNP's fifth generation of progress—version 2. Lippincott Williams and Wilkins, New York

    Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 83(5400):397–401

    Article  Google Scholar 

  • Giros B, Jaber M, Jones S, Wightman RM, Caron M (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    Article  PubMed  CAS  Google Scholar 

  • Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, Vasquez AA, Chen W, Asherson P, Buitelaar J et al (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B (Neuropsychiatr Genet) 147B(8):1345–1354

    Article  CAS  Google Scholar 

  • Manor I, Tyano S, Mel E, Eisenberg J, Bachner-Melman R, Kotler M, Ebstein RP (2002) Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatry 7(6):626–632

    Article  PubMed  CAS  Google Scholar 

  • McEvoy B, Hawi Z, Fitzgerald M, Gill M (2002) No evidence of linkage or association between the norepinephrine transporter (NET) gene polymorphisms and ADHD in the Irish population. Am J Med Genet (Neuropsychiatr Genet) 114(6):665–666

    Article  Google Scholar 

  • Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd RD, Biederman J, Byrne D, Dechairo B, Guiney A, McCracken J, McGough J, Nelson SF, Reiersen AM, Wilens TE, Wozniak J, Neale BM, Faraone SV (2010) Family-based genome-wide association scan of attention deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49(9):898–905

    Article  PubMed  Google Scholar 

  • Popper CW (2000) Pharmacologic alternatives to psychostimulants for the treatment of ADHD. Child Adolesc Psychiatr Clin N Am 9(3):605–646, Viii

    Google Scholar 

  • Ramoz N, Boni C, Downing AM, Close SL, Peters SL, Prokop AM, Allen AJ, Hamon M, Purper-Ouakil D, Gorwood P (2009) A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology 34(9):2135–2142

    Article  PubMed  CAS  Google Scholar 

  • Russell VA (2000) The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev 24(1):133–136

    Article  PubMed  CAS  Google Scholar 

  • Silverman WK, Albano AM (1996) The anxiety disorders interview schedule for children for DSM-IV (child and parent version). TX Psychological Corporation, San Antonio

    Google Scholar 

  • Smith A, Nutt D (1996) Noradrenaline and attention lapses. Nature 380(6572):291

    Article  PubMed  CAS  Google Scholar 

  • Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, Taylor E, Casey BJ, Castellanos FX, Wadhwa PD (2007) Etiologic subtypes of ADHD: brain imaging, molecular genetics and environmental factors and the dopamine hypothesis. Neuropsychol Rev 17:39–59

    Article  PubMed  Google Scholar 

  • Xu X, Knight J, Brookes K, Mill J, Sham P, Craig I, Taylor E, Asherson P (2005) DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: no evidence for association. Am J Med Genet B Neuropsychiatr Genet 134B(1):115–118

    Article  PubMed  Google Scholar 

  • Yang L, Wang YF, Li J, Faraone SV (2004) Association of norepinephrine transporter gene with methylphenidate response. J Am Acad Child Adolesc Psychiatry 43:1154–1158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the generous financial support of the Australian National Health and Medical Research Council (NHMRC) under grants 569636, 569533 and 1027526 and the Health Research Board of Ireland. MAB is supported by a Career Development Award from the Australian NHMRC. We would also like to thank the participating families and Dr. Tarrant Cummins for the comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziarih Hawi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 47 kb)

ESM 2

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawi, Z., Matthews, N., Barry, E. et al. A high density linkage disequilibrium mapping in 14 noradrenergic genes: evidence of association between SLC6A2, ADRA1B and ADHD. Psychopharmacology 225, 895–902 (2013). https://doi.org/10.1007/s00213-012-2875-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2875-x

Keywords

Navigation