Skip to main content
Log in

Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The inverse problem of electrical impedance tomography is severely ill-posed, meaning that, only limited information about the conductivity can in practice be recovered from boundary measurements of electric current and voltage. Recently it was shown that a simple monotonicity property of the related Neumann-to-Dirichlet map can be used to characterize shapes of inhomogeneities in a known background conductivity. In this paper we formulate a monotonicity-based shape reconstruction scheme that applies to approximative measurement models, and regularizes against noise and modelling error. We demonstrate that for admissible choices of regularization parameters the inhomogeneities are detected, and under reasonable assumptions, asymptotically exactly characterized. Moreover, we rigorously associate this result with the complete electrode model, and describe how a computationally cheap monotonicity-based reconstruction algorithm can be implemented. Numerical reconstructions from both simulated and real-life measurement data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The former in the sense in which \(\mathbb {R}^k\) is identified with the subspace of \(L^2(\partial \varOmega )\) consisting of piecewise constant functions of form \(a = \sum _j a_j\chi _j\) where \(\chi _j\) is the characteristic function of \(E_j\).

  2. Estimate (32) could be enforced by assuming \(E_j^+\) are regular enough to allow a “scaling argument” resulting in a Poincaré inequality with a constant bounded by \(C\,\mathrm{diam}(E_j^+)\) [2, 23, 33].

References

  1. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163(1), 265–299 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen. 22(4),751–756 (2003)

  3. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, 99–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brühl, M.: Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32, 1327–1341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brühl, M., Hanke, M.: Numerical implementation of two non-iterative methods for locating inclusions by impedance tomography. Inverse Probl. 16, 1029–1042 (2000)

    Article  MATH  Google Scholar 

  6. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73. Sociedade Brasileira de Matemática, Rio de Janeiro (1980)

  7. Cheney, M., Isaacson, D., Newell, J., Simske, S., Goble, J.: Noser: an algorithm for solving the inverse conductivity problem. Int. J. Imaging Syst. Technol. 2(2), 66–75 (1990)

    Article  Google Scholar 

  8. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, K., Isaacson, D., Newell, J., Gisser, D.: Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36(9), 918–924 (1989)

    Article  Google Scholar 

  10. Chung, E.T., Chan, T.F., Tai, X.C.: Electrical impedance tomography using level set representation and total variation regularization. J. Comput. Phys. 205(1), 357–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gebauer, B.: Localized potentials in electrical impedance tomography. Inverse Probl. Imaging 2(2), 251–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hanke, M., Brühl, M.: Recent progress in electrical impedance tomography. Inverse Probl. 19(6), S65–S90 (2003) (Special section on imaging)

  13. Hanke-Bourgeois, M., Kirsch, A.: Sampling methods. In: Handbook of Mathematical Methods in Imaging, pp. 591–647. Springer, New York (2015)

  14. Harrach, B.: Recent progress on the factorization method for electrical impedance tomography. Comput. Math. Methods Med. 2013 (2013) http://dx.doi.org/10.1155/2013/425184

  15. Harrach, B.: Interpolation of missing electrode data in electrical impedance tomography. Inverse Probl. 31(11), 115,008 (2015)

  16. Harrach, B., Lee, E., Ullrich, M.: Combining frequency-difference and ultrasound modulated electrical impedance tomography. Inverse Probl. 31(9), 095,003 (2015)

  17. Harrach, B., Seo, J.K.: Detecting inclusions in electrical impedance tomography without reference measurements. SIAM J. Appl. Math. 69(6), 1662–1681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harrach, B., Seo, J.K.: Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal. 42(4), 1505–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harrach, B., Ullrich, M.: Monotonicity-based shape reconstruction in electrical impedance tomography. SIAM J. Math. Anal. 45(6), 3382–3403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harrach, B., Ullrich, M.: Resolution guarantees in electrical impedance tomography. IEEE Trans. Med. Imaging 34(7), 1513–1521 (2015)

    Article  Google Scholar 

  21. Heikkinen, L.M., Vilhunen, T., West, R.M., Vauhkonen, M.: Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 13, 1855–1861 (2002)

    Article  Google Scholar 

  22. Hyvönen, N.: Complete electrode model of electrical impedance tomography: approximation properties and characterization of inclusions. SIAM J. Appl. Math. 64(3), 902–931 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hyvönen, N.: Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math. Models Methods Appl. Sci. 19(7), 1185–1202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hyvönen, N., Karhunen, K., Seppänen, A.: Fréchet derivative with respect to the shape of an internal electrode in electrical impedance tomography. SIAM J. Appl. Math. 70(6), 1878–1898 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hyvönen, N., Seppänen, A., Staboulis, S.: Optimizing electrode positions in electrical impedance tomography. SIAM J. Appl. Math. 74(6), 1831–1851 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ikehata, M.: How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms. J Inverse Ill Posed Probl. 7(3), 255–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ikehata, M.: Reconstruction of the support function for inclusion from boundary measurements. J. Inverse Ill Posed Probl. 8, 367–378 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Kaipio, J., Kolehmainen, V., Somersalo, E., Vauhkonen, M.: Statistical inversion and monte carlo sampling methods in electrical impedance tomography. Inverse Probl. 16(5), 1487–1522 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kato, T.: Perturbation theory for linear operators, vol. 132. Springer, Berlin (1995)

    MATH  Google Scholar 

  30. Lechleiter, A.: A regularization technique for the factorization method. Inverse Probl. 22, 1605 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lechleiter, A., Hyvönen, N., Hakula, H.: The factorization method applied to the complete electrode model of impedance tomography. SIAM J. Appl. Math. 68, 1097–1121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lechleiter, A., Rieder, A.: Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Probl. 24, 065,009 (2008)

  33. Lieb, E.H., Seiringer, R., Yngvason, J.: Poincaré inequalities in punctured domains. Ann. Math. 158, 1067–1080 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. 1. Springer, New York-Heidelberg (1972)

    Book  MATH  Google Scholar 

  35. Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143, 71–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. vol. I. Functional Analysis. Academic Press Inc., New York (1990)

  37. Resnick, S.I.: A Probability Path. Birkhäuser, Boston (2014)

    Book  MATH  Google Scholar 

  38. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tamburrino, A.: Monotonicity based imaging methods for elliptic and parabolic inverse problems. J. Inverse Ill Posed Probl. 14(6), 633–642 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tamburrino, A., Rubinacci, G.: A new non-iterative inversion method for electrical resistance tomography. Inverse Probl. 18(6), 1809 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Probl. 25(12), 123,011 (2009)

  43. Vauhkonen, M., Vadász, D., Karjalainen, P.A., Somersalo, E., Kaipio, J.P.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Imaging 17, 285–293 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

Henrik Garde is supported by advanced grant no. 291405 HD-Tomo from the European Research Council. Stratos Staboulis is supported by grant no. 4002-00123 Improved Impedance Tomography with Hybrid Data from The Danish Council for Independent Research | Natural Sciences. The authors are grateful to Professor Jari Kaipio’s research group at the University of Eastern Finland (Kuopio) for granting us access to their EIT devices. We thank Marcel Ullrich at University of Stuttgart for his valuable insight on the implementation details of the presented method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stratos Staboulis.

Appendices

Appendix A: A lemma on the convergence of infima/suprema

Lemma 2

Let J be an arbitrary index set and \(\{a_j\}_{j\in J}, \{a_j(h)\}_{j\in J} \subset \mathbb {R}\), \(h > 0\), be sequences such that \(\inf _{j\in J}a_j>-\infty \) and

$$\begin{aligned} \lim _{h\rightarrow 0}\sup _{j\in J}|a_j - a_j(h)| = 0. \end{aligned}$$

Denoting \( a = \inf _{j\in J} a_j\) and \(a(h) = \inf _{j\in J} a_j(h)\) we have

$$\begin{aligned} \lim _{h\rightarrow 0} a(h) = a. \end{aligned}$$
(51)

Proof

Let us first show that the limit in (51) exists. Given an arbitrary \(\varepsilon > 0\), there exists an \(h_{\varepsilon } > 0\) such that \(\sup _{j\in J}|a_j - a_j(h)| \le \varepsilon /2\) for all \(h \in (0,h_{\varepsilon })\). Let \(h, h' \in (0,h_{\varepsilon })\) then \(\sup _{j\in J}|a_j(h)-a_j(h')|\le \varepsilon \), and fix a sequence \(\{j(k)\}_{k=1}^\infty \subseteq J\) such that \( a_{j(k)}(h)\) converges to a(h). Hence

$$\begin{aligned} a(h') \le \liminf _{k\rightarrow \infty } a_{j(k)}(h') \le \liminf _{k\rightarrow \infty } a_{j(k)}(h) + \varepsilon = a(h) + \varepsilon . \end{aligned}$$

By symmetry with respect to h and \(h'\), it follows that \(\{a(h)\}_{h>0}\) is a Cauchy sequence.

It still remains to show that the limit coincides with a. For any \(\varepsilon > 0\), there exists \(j_{\varepsilon }\in J\) and \(h_{\varepsilon } > 0\) such that \(|a_{j_{\varepsilon }} - a|\le \varepsilon /2\) and \(\sup _{j\in J}|a_j - a_j(h)| \le \varepsilon /2\) for \(h\in (0,h_{\varepsilon })\), respectively. Thus for \(h\in (0,h_{\varepsilon })\)

$$\begin{aligned} a(h) \le a_{j_{\varepsilon }}(h) \le a_{j_{\varepsilon }} + \varepsilon /2 \le a + \varepsilon . \end{aligned}$$

For \(h\in (0,h_{\varepsilon })\) pick \(j_{\varepsilon }'\) such that \(|a_{j_{\varepsilon }'}(h)-a(h)|\le \varepsilon /2\) then

$$\begin{aligned} a\le a_{j_{\varepsilon }'} \le a_{j_{\varepsilon }'}(h) + \varepsilon /2 \le a(h)+\varepsilon . \end{aligned}$$

Altogether we have shown for any \(\varepsilon > 0\) that \(|a(h) - a| \le \varepsilon \) for \(h\in (0,h_{\varepsilon })\). \(\square \)

Appendix B: Linearization of the CEM and the CM

Proposition 5

The operators \(\Lambda (\gamma ) \in \mathcal {L}(L_\diamond ^2(\partial \varOmega ))\) and \(R(\gamma )\in \mathcal {L}(\mathbb {R}_\diamond ^k)\) are analytic in \(\gamma \in L_+^\infty (\varOmega )\). In particular, they are infinitely many times Fréchet differentiable. Furthermore, if \(\eta \) is compactly supported in \(\varOmega \), then the boundary value problems

$$\begin{aligned}&\left\{ \begin{array}{ll} \displaystyle {\nabla \cdot (\gamma \nabla u') = -\nabla \cdot (\eta \nabla u ) \quad } &{}\mathrm{in}\;\; \varOmega , \\ {\displaystyle {\nu \cdot \gamma \nabla u'} = 0 }\quad &{}\mathrm{on}\;\;\partial \varOmega , \end{array} \right. \end{aligned}$$
(52)
$$\begin{aligned}&\left\{ \begin{array}{ll} \displaystyle {\nabla \cdot (\gamma \nabla v') = -\nabla \cdot (\eta \nabla v) \quad } &{}\mathrm{in}\;\; \varOmega , \\ {\displaystyle {\nu \cdot \gamma \nabla v'} = 0 }\quad &{}\mathrm{on}\;\;{\partial \varOmega }{\setminus } \bigcup _{j=1}^k \overline{E_j},\\ {\displaystyle v' + z{\nu \cdot \gamma \nabla v'} = V'_j } \quad &{}\mathrm{on}\;\; E_j, \\ {\displaystyle \int _{E_j}\nu \cdot \gamma \nabla v'\, dS = 0}, \quad &{} j=1,2,\ldots k, \\ \end{array} \right. \end{aligned}$$
(53)

uniquely determine the Fréchet derivatives via

$$\begin{aligned} (\Lambda '(\gamma )\eta )f = u'|_{\partial \Omega }, \qquad (R'(\gamma )\eta )I = V', \end{aligned}$$

respectively. Above u and (vV) are the unique weak solutions of (2) and (29), respectively.

Proof

For clarity, we only consider the CEM case as the CM can be handled analogously [6]. Given \((v,V)\in H^1(\varOmega )\oplus \mathbb {R}_\diamond ^k\) and \(\eta \in L_+^\infty (\varOmega )\), the variational problem

$$\begin{aligned} \int _\varOmega \gamma \nabla v' \cdot \nabla w \, dx + \sum _{j=1}^k \int _{E_j}\frac{1}{z}(v'-V_j')(w-W_j)\,dS = -\int _\varOmega \eta \nabla v \cdot \nabla w \,dx \end{aligned}$$
(54)

for all \((w,W)\in H^1(\varOmega ) \oplus \mathbb {R}_\diamond ^k\), is uniquely solvable. Moreover, if (vV) weakly solves (29), then \(V' = (R'(\gamma )\eta )I\) [32]. Clearly, if \(\eta \) is compactly supported, the right-hand side of (54) does not induce any boundary terms and hence \((v',V')\) satisfies (53).

Define the mapping

$$\begin{aligned} D = D(\eta ):\mathbb {R}_\diamond ^k \rightarrow \mathbb {R}_\diamond ^k, \quad V \mapsto V' \end{aligned}$$

as the solution operator to (54). Consider the expansion

$$\begin{aligned} V(\gamma + \eta ) = V(\gamma ) + \tilde{V}(\eta ), \end{aligned}$$

where we denote \(V(\gamma ) = R(\gamma )I\) and \(V(\gamma +\eta ) = R(\gamma + \eta )I\). A direct calculation using the variational formulation with the associated internal potentials reveals

$$\begin{aligned} \tilde{V}(\eta ) = D(\eta )V(\gamma +\eta ) = D(\eta )\tilde{V}(\eta ) + D(\eta )V(\gamma ). \end{aligned}$$

As \(\Vert D(\eta )\Vert \le C\Vert \eta \Vert _{L^\infty (\varOmega )}\), the associated Neumann-series converges for small enough \(\eta \). Consequently,

$$\begin{aligned} V(\gamma +\eta ) = V(\gamma ) + \tilde{V}(\eta ) = V(\gamma ) + (\mathop {Id }- D(\eta ))^{-1} D(\eta )V(\gamma ) = \sum _{m=0}^\infty D(\eta )^m V(\gamma ). \end{aligned}$$
(55)

Different order Fréchet derivatives can be inductively derived using (55) and the fact that \(D(\eta )\) is linear. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garde, H., Staboulis, S. Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography. Numer. Math. 135, 1221–1251 (2017). https://doi.org/10.1007/s00211-016-0830-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0830-1

Keywords

Mathematics Subject Classification

Navigation