Skip to main content
Log in

Discontinuous Petrov–Galerkin boundary elements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Generalizing the framework of an ultra-weak formulation for a hypersingular integral equation on closed polygons in Heuer and Pinochet (SIAM J Numer Anal: 52(6), 2703–2721, 2014), we study the case of a hypersingular integral equation on open and closed polyhedral surfaces. We develop a general ultra-weak setting in fractional-order Sobolev spaces and prove its well-posedness and equivalence with the traditional formulation. Based on the ultra-weak formulation, we establish a discontinuous Petrov–Galerkin method with optimal test functions and prove its quasi-optimal convergence in related Sobolev norms. For closed surfaces, this general result implies quasi-optimal convergence in the \(L^2\)-norm. Some numerical experiments confirm expected convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.hlib.org.

References

  1. Ainsworth, M., McLean, W., Tran, T.: The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36, 1901–1932 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces. Number 223 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin (1976)

  4. Bottasso, C.L., Micheletti, S., Sacco, R.: The discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Eng. 191(31), 3391–3409 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramwell, J., Demkowicz, L., Gopalakrishnan, J., Qiu, W.: A locking-free \(hp\) DPG method for linear elasticity with symmetric stresses. Numer. Math. 122(4), 671–707 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer series in computational mathematics, vol. 15. Springer-Verlag, New York (1991)

  7. Broersen, D., Stevenson, R.: A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form. IMA J. Numer. Anal. 35(1), 39–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl, \(\Omega \)) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buffa, A., Sauter, S.: On the acoustic single layer potential: stabilization and Fourier analysis. SIAM J. Sci. Comput. 28(5):1974–1999 (electronic) (2006)

  10. Cessenat, O., Després, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, J., Heuer, N., Bui-Thanh, T., Demkowicz, L.: Robust DPG method for convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-dependent test norms. Comput. Math. Appl. 67(4), 771–795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandler-Wilde, S.N., Graham, I.G.: Boundary integral methods in high frequency scattering. In: Highly oscillatory problems, volume 366 of London Math. Soc. Lecture Note Ser., pp. 154–193. Cambridge Univ. Press, Cambridge (2009)

  13. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Demkowicz, L., Gopalakrishnan, J.: Analysis of the DPG method for the Poisson problem. SIAM J. Numer. Anal. 49(5), 1788–1809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. Part II. Optimal test functions. Numer. Methods Partial Differ. Equ. 27, 70–105 (2011)

    Article  MATH  Google Scholar 

  17. Demkowicz, L., Gopalakrishnan, J., Muga, I., Zitelli, J.: Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Eng. 213–216, 126–138 (2012)

  18. Demkowicz, L., Heuer, N.: Robust DPG method for convection-dominated diffusion problems. SIAM J. Numer. Anal. 51(5), 2514–2537 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Després. B.: Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris Sér. I Math. 318(10), 939–944 (1994)

  20. Engleder, S., Steinbach, O.: Stabilized boundary element methods for exterior Helmholtz problems. Numer. Math. 110(2), 145–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ervin, V.J., Heuer, N.: An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26(2), 297–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gatica, G.N., Healey, M., Heuer, N.: The boundary element method with Lagrangian multipliers. Numer. Methods Partial Differ. Equ. 25(6), 1303–1319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations, volume 5 of Springer series in computational mathematics. Theory and algorithms. Springer-Verlag, Berlin (1986)

  24. Gopalakrishnan, J., Qiu, W.: An analysis of the practical DPG method. Math. Comp. 83(286), 537–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman Publishing Inc., Boston (1985)

    MATH  Google Scholar 

  26. Hackbusch, W.: A sparse matrix arithmetic based on \(H\)-matrices. I. Introduction to \(H\)-matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer, New York (2009)

  28. Heuer, N.: Additive Schwarz method for the \(p\)-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88(3), 485–511 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heuer, N.: On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417(2), 505–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Heuer, N., Karkulik, M.: A robust DPG method for singularly perturbed reaction-diffusion problems. (2015). arXiv:1509.07560

  31. Heuer, N., Karkulik, M., Sayas, F.-J.: Note on discontinuous trace approximation in the practical DPG method. Comput. Math. Appl. 68, 1562–1568 (2014)

    Article  MathSciNet  Google Scholar 

  32. Heuer, N., Pinochet, F.: Ultra-weak formulation of a hypersingular integral equation on polygons and DPG method with optimal test functions. SIAM J. Numer. Anal. 52(6), 2703–2721 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Springer, New York (2008)

  34. Maischak, M.: The analytical computation of the Galerkin elements for the Laplace, Lamé and Helmholtz equation in \(3\)D-BEM. Technical Report 95-16, DFG-Schwerpunkt Randelementmethoden (1995)

  35. McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)

  36. Nédélec, J.-C.: Integral equations with nonintegrable kernels. Integral Equ. Oper. Theory 5, 562–572 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roberts, R.E., Thomas, J.M.: Mixed and hybrid methods. In Ciarlet, P.G., Lions J.L. (eds.) Handbook of numerical analysis. Vol. II, pp. 523–639, North-Holland, Amsterdam (1991)

  38. Steinbach, O.: A robust boundary element method for nearly incompressible linear elasticity. Numer. Math. 95(3), 553–562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stephan, E.P.: Boundary integral equations for screen problems in \({\mathbb{R}}^3\). Integral Equ. Oper. Theory 10, 257–263 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zitelli, J., Muga, I., Demkowicz, L., Gopalakrishnan, J., Pardo, D., Calo, V.M.: A class of discontinuous Petrov-Galerkin methods. Part IV: the optimal test norm and time-harmonic wave propagation in 1D. J. Comput. Phys. 230(7), 2406–2432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Heuer.

Additional information

Supported by CONICYT through FONDECYT projects 1150056, 3140614 and Anillo ACT1118 (ANANUM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuer, N., Karkulik, M. Discontinuous Petrov–Galerkin boundary elements. Numer. Math. 135, 1011–1043 (2017). https://doi.org/10.1007/s00211-016-0824-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0824-z

Mathematics Subject Classification

Navigation