Skip to main content
Log in

Asymptotic expansions and fast computation of oscillatory Hilbert transforms

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotics and fast computation of the one-sided oscillatory Hilbert transforms of the form

$$\begin{aligned} H^{+}(f(t)e^{i\omega t})(x)=-\!\!\!\!\!\!\int \nolimits _{\!\!\!0}^{\infty }e^{i\omega t}\frac{f(t)}{t-x}\,dt,\quad \omega >0,\quad x\ge 0, \end{aligned}$$

where the bar indicates the Cauchy principal value and \(f\) is a real-valued function with analytic continuation in the first quadrant, except possibly a branch point of algebraic type at the origin. When \(x=0\), the integral is interpreted as a Hadamard finite-part integral, provided it is divergent. Asymptotic expansions in inverse powers of \(\omega \) are derived for each fixed \(x\ge 0\), which clarify the large \(\omega \) behavior of this transform. We then present efficient and affordable approaches for numerical evaluation of such oscillatory transforms. Depending on the position of \(x\), we classify our discussion into three regimes, namely, \(x=\mathcal O (1)\) or \(x\gg 1\), \(0<x\ll 1\) and \(x=0\). Numerical experiments show that the convergence of the proposed methods greatly improve when the frequency \(\omega \) increases. Some extensions to oscillatory Hilbert transforms with Bessel oscillators are briefly discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The use of increased precision is just to show the convergence rates of our methods.

  2. This can be done with a minor adaptation of Oliver’s method for the LU decomposition of a tridiagonal matrix [28]. We omit the details.

References

  1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington D.C. (1964)

    MATH  Google Scholar 

  3. Asheim, A., Huybrechs, D.: Complex Gaussian quadrature for oscillatory integral transforms. Report TW 594, (2011)

  4. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Capobianco, M.R., Criscuolo, G.: On quadrature for Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math. 156, 471–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, K.C., Evans, G.A., Webster, J.R.: A method to generate generalized quadrature rules for oscillatory integrals. Appl. Numer. Math. 34, 85–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deaño, A., Huybrechs, D.: Complex Gaussian quadrature of oscillatory integrals. Numer. Math. 112, 197–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals. IMA J. Numer. Anal. 31, 1253–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

    MATH  Google Scholar 

  11. Gentleman, W.M.: Implementing Clenshaw–Curtis quadrature. II. Comm. ACM 15, 343–346 (1972)

    Article  MathSciNet  Google Scholar 

  12. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)

    Google Scholar 

  14. Hasegawa, T., Torii, T.: An automatic quadrature for Cauchy principal value integrals. Math. Comput. 56, 741–754 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44, 1026–1048 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 461, 1383–1399 (2005)

    Article  MATH  Google Scholar 

  17. Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals ans their implementation. BIT Numer. Math. 44, 755–772 (2004)

    Article  MATH  Google Scholar 

  18. King, F.W.: Hilbert Transforms: Volume 1. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  19. King, F.W., Smethells, G.J., Helleloid, G.T., Pelzl, P.J.: Numerical evaluation of Hilbert transforms for oscillatory functions: a convergence accelerator approach. Comput. Phys. Commun. 145, 256–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krommer, A.R., Ueberhuber, C.W.: Computational Integration. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  21. Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67, 95–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Levin, D.: Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comput. 38, 531–538 (1982)

    Article  MATH  Google Scholar 

  23. Lyness, J.N.: The Euler Maclaurin expansion for the Cauchy principal value integral. Numer. Math. 46, 611–622 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milovanović, G.V.: Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures. Comput. Math. Appl. 36, 19–39 (1998)

    Article  MATH  Google Scholar 

  25. Martin, P.A.: On the null-field equations for water-wave radiation problems. J. Fluid Mech. 113, 315–332 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Monegato, G., Lyness, J.N.: The Euler–Maclaurin expansion and finite-part integrals. Numer. Math. 81, 273–291 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Okecha, G.E.: Quadrature formulae for Cauchy principal value integrals of oscillatory kind. Math. Comput. 49, 259–268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliver, J.: Relative error propagation in the recursive solution of linear recurrence relations. Numer. Math. 9, 323–340 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olver, F.W.J.: Numerical solution of second-order linear difference equation. J. Res. Nat. Bur. Standards Sect. B 71B, 111–129 (1967)

    Article  MathSciNet  Google Scholar 

  30. Olver, S.: Computing the Hilbert transform and its inverse. Math. Comput. 80, 1745–1767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA. J. Numer. Anal. 26, 213–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Olver, S.: GMRES for the differentiation operator. SIAM J. Numer. Anal. 47, 3359–3373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Piessens, R., Branders, M.: On the computation of Fourier transforms of singular functions. J. Comput. Appl. Math. 43, 159–169 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ursell, F.: Integrals with a large parameter: Hilbert transforms. Math. Proc. Camb. Soc. 93, 141–149 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, H., Xiang, S.: Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput. 215, 1886–1894 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, H., Xiang, S.: On the evaluation of Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math. 234, 95–100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wong, R.: Asymptotic expansion of the Hilbert transform. SIAM J. Math. Anal. 11, 92–99 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wong, R.: Quadrature formulas for oscillatory integral transforms. Numer. Math. 39, 351–360 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wong, R.: Asymptotic Approximations of Integrals. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  40. Xiang, S.: Efficient Filon-type methods for \(\int _a^bf(x)e^{i\omega g(x)}dx\). Numer. Math. 105, 633–658 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiang, S., Chen, X., Wang, H.: Error bounds for approximation in Chebyshev points. Numer. Math. 116, 463–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Andreas Asheim for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Wang.

Additional information

H. Wang and D. Huybrechs were supported by the Fund for Scientific Research—Flanders through Research Project G.0617.10. Lun Zhang is a Postdoctoral Fellow of the Fund for Scientific Research—Flanders (FWO), Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zhang, L. & Huybrechs, D. Asymptotic expansions and fast computation of oscillatory Hilbert transforms. Numer. Math. 123, 709–743 (2013). https://doi.org/10.1007/s00211-012-0501-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0501-9

Mathematics Subject Classification (2010)

Navigation