Skip to main content
Log in

Canonical Artin stacks over log smooth schemes

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding \(X\) is canonically the good moduli space (in the sense of Alper) of a smooth log smooth Artin stack whose stacky structure is supported on the singular locus of \(X\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper, J.: Good Moduli Spaces for Artin Stacks. http://arxiv.org/abs/0804.2242 (2009)

  2. Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Ann. Inst. Fourier 58, 1057–1091 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borisov, L., Chen, L., Smith, G.: The orbifold Chow ring of toric Deligne–Mumford stacks. J. Am. Math. Soc. 18(1), 193–215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N.: Groupes et algèbres de Lie. Ch. V. Hermann, Paris (1968)

    MATH  Google Scholar 

  5. Fantechi, B., Mann, E., Nironi, F.: Smooth toric Deligne–Mumford stacks. J. Reine Angew. Math. 648, 201–244 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Fulton, W.: Introduction to Toric Varieties. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  7. Iwanari, I.: The category of toric stacks. Compos. Math. 145(3), 718–746 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iwanari, I.: Logarithmic geometry, minimal free resolutions and toric algebraic stacks. Publ. Res. Inst. Math. Sci. 45(4), 1095–1140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, Y.: The orbifold cohomology ring of simplicial toric stack bundles. Ill. J. Math. 52(2), 493–514 (2008)

    Google Scholar 

  10. Kato, F.: Log smooth deformation theory. Tohoku Math. J. (2) 48(3), 317–354 (1996)

    Google Scholar 

  11. Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Algebraic analysis, geometry, and number theory (Baltimore, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989)

  12. Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147, 1–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ogus, A.: Lectures on Logarithmic Algebraic Geometry (unpublished notes). http://math.berkeley.edu/~ogus/preprints/log-book/logbook.pdf

  14. Olsson, M.: Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. (4) 36(5), 747–791 (2003)

    Google Scholar 

  15. Satriano, M.: The Chevalley–Shephard–Todd Theorem for finite linearly reductive group schemes. Algebra Number Theory 6–1, 1–26 (2012)

    Article  MathSciNet  Google Scholar 

  16. Satriano, M.: de Rham Theory for tame stacks and schemes with linearly reductive singularities. Ann. l’Institut Fourier. http://arxiv.org/abs/0911.2056 (2012, to appear)

  17. Wehlau, D.: When is a ring of torus invariants a polynomial ring? Manuscr. Math. 82, 161–170 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wehlau, D.: A proof of the Popov conjecture for tori. Proc. Am. Math. Soc. 114(3), 839–845 (1992)

    Google Scholar 

  19. Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97(3), 613–670 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Dan Abramovich, Bhargav Bhatt, Ishai Dan-Cohen, Anton Geraschenko, Arthur Ogus, and Shenghao Sun for many helpful conversations. It is a pleasure to thank my advisor, Martin Olsson, whose guidance and inspiration greatly shaped this paper. Lastly, I thank the anonymous referee for his enthusiastic comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Satriano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satriano, M. Canonical Artin stacks over log smooth schemes. Math. Z. 274, 779–804 (2013). https://doi.org/10.1007/s00209-012-1096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1096-7

Keywords

Mathematics Subject Classification (2000)

Navigation