Skip to main content
Log in

Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria–Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235–241, 2007). However, transmission electron microscopy showed no surface changes in PVA-grown cells and revealed the presence of polymer bodies in the periplasm of PVA-grown cells, which were not observed in LB-grown cells. The presence of polymer bodies was supported by low-vacuum SEM observation of PVA- and LB-grown cells of strain 113P3, and the presence of similar polymer bodies was also found when Sphingopyxis macrogoltabida 103 and S. terrae were grown in polyethylene glycol (PEG). The extraction of PVA and PEG from the periplasmic fraction of cells using a modified Anraku and Heppel method and their analysis by MALDI–TOF mass spectrometry strongly suggested that the polymer bodies are composed of PVA and PEG, respectively, in Sphingopyxis sp. 113P3 (PVA degrader) and Sphingopyxis macrogoltabida 103 or S. terrae (PEG degraders). PEG-grown S. macrogoltabida 103 and S. terrae showed higher transport of 14C-PEG 4000 than LB-grown cells. Recombinant PegB (TonB-dependent receptor-like protein consisting of a barrel structure) interacted with PEG 200, 4000 and 20000, suggesting that the barrel protein in the outer membrane contributes to the transport of PEG into the periplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson KL, Salyers AA (1989) Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol 171:3192–3198

    PubMed  CAS  Google Scholar 

  • Anraku Y, Heppel LA (1967) On the nature of the changes induced in Escherichia coli by osmotic shock. J Biol Chem 242:2561–2569

    PubMed  CAS  Google Scholar 

  • Charoenpanich J, Tani A, Moriwaki N, Kimbara K, Kawai F (2006) Dual regulation of a polyethylene glycol-degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103. Microbiology 152:3025–3034

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Mc Yu, Reeves AR, Salyers AA (1995) Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol 177:3721–3727

    PubMed  CAS  Google Scholar 

  • Cho KH, Salyers AA (2001) Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 183:7224–7230

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka T, Asahi N, Tsuji M (1995) Purification and characterization of poly(vinyl alcohol) dehydrogenase from Pseudomonas sp. 113P3. Biosci Biotechnol Biochem 59:1813–1816

    Article  CAS  Google Scholar 

  • Hisano T, Yonemoto Y, Yamashita T, Fukud Y, Kimura A, Murata K (1995) Direct uptake of alginate molecules through a pit on the bacterial cell surface; a novel mechanism for the uptake of macromolecules. J Ferment Bioeng 79:538–544

    Article  CAS  Google Scholar 

  • Hobot JA, Villiger W, Escaig J, Maeder M, Ryter A, Kellrnnrthrt R (1985) Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J Bacteriol 161:960–971

    Google Scholar 

  • Hu X, Mamoto R, Shimomura Y, Kimbara K, Kawai F (2007) Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. Arch Microbiol 188:235–241

    Article  PubMed  CAS  Google Scholar 

  • Kawai F (1999) Sphingomonads involved in the biodegradation of xenobiotic polymers. J Ind Microbiol Biotechnol 23:400–407

    Article  PubMed  CAS  Google Scholar 

  • Kawai F (2002) Microbial degradation of polyethers. Appl Microbiol Biotechnol 58:30–38

    Article  PubMed  CAS  Google Scholar 

  • Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759

    Article  PubMed  CAS  Google Scholar 

  • Kawai F, Enokibara S (1996) Symbiotic degradation of polyethylene glycol (PEG) 20,000-phthalate polyester by phthalate ester- and PEG 20,000-utilizing bacteria. J Ferment Technol 82:575–579

    CAS  Google Scholar 

  • Kawai F, Hu X (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84:227–237

    Article  PubMed  CAS  Google Scholar 

  • Kawai F, Kimura T, Tani Y, Yamada H, Kurachi K (1985) Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl Environ Microbiol 40:701–705

    Google Scholar 

  • Kellenberger E, Ryter A (1964) Modern developments in electron microscopy. In: Siegel BM (ed) Bacteriology. Academic Press, Inc., London, pp 335–393

    Google Scholar 

  • Kim BC, Sohn CK, Lim SK, Lee JW, Park W (2003) Degradation of polyvinyl alcohol by Sphingomonas sp. SA3 and its symbiote. J Ind Microbiol Biotechnol 30:70–74

    PubMed  CAS  Google Scholar 

  • Klomklang W, Tani A, Kimbara K, Mamoto R, Ueda T, Shimao M, Kawai F (2005) Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. Strain 113P3. Microbiology 151:1255–1262

    Article  PubMed  CAS  Google Scholar 

  • Mamoto R, Nagai R, Tachibana S, Yasuda M, Tani A, Kimbara K, Kawai F (2006) Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. Strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152:1941–1949

    Article  Google Scholar 

  • Matsumura S, Steinbüchel A (eds) (2002) Biopolymers, vol 9. Springer-VCH, Weinheim

    Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed  CAS  Google Scholar 

  • Reeves AR, D’Elia JN, Frias J, Salyers AA (1996) A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol 178:823–830

    PubMed  CAS  Google Scholar 

  • Salyers AA, O’Brien M (1980) Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol 143:772–780

    PubMed  CAS  Google Scholar 

  • Shimao M, Ninomiya K, Kuno O, Sakazawa C (1986) Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl Environ Microbiol 51:268–275

    PubMed  CAS  Google Scholar 

  • Tabata K, Kasuya K, Abe H, Masuda K, Doi Y (1999) Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater. Appl Environ Microbiol 65:4268–4270

    PubMed  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    PubMed  CAS  Google Scholar 

  • Tani A, Charoenpanich J, Mori T, Takeichi M, Kimbara K, Kawai F (2007) Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads. Microbiology 153:338–346

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka H, Kawai F (1989) Purification and characterization of constitutive polyethylene glycol (PEG) dehydrogenase of a PEG 4000-utilizing Flavobacterium sp. No. 203. J Ferment Bioeng 67:324–330

    Article  CAS  Google Scholar 

  • Yamatsu A, Matsumi R, Atomi H, Imanaka T (2006) Isolation and characterization of a novel poly(vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3. Appl Microbiol Biotechnol 72:804–811

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Toshiharu Kudo and Mr. Fujio Nishida, Sales & Technical Support Center, Bruker Daltonics K. K., Yokohama, Japan for their measurement of MALDI–TOF–MS of PVA and to Ms. Yoriko Shimizu, Research Institute for Bioresources, Okayama University for her measurement of MALDI–TOF–MS of PEG. We also appreciate Mr. Makoto Ozaki, Radioisotope Center, Kyoto Institute of Technology for their kind help for radioisotope experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusako Kawai.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, F., Kitajima, S., Oda, K. et al. Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them. Arch Microbiol 195, 131–140 (2013). https://doi.org/10.1007/s00203-012-0859-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0859-1

Keywords

Navigation