Skip to main content
Log in

Bedeutung der mtDNA-Analyse für forensische Fragestellungen

Relevance of mtDNA analysis for forensic applications

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Die Analyse der mitochondrialen DNA (mtDNA) stellt in der Forensik eine technologische Nische dar, die vor allem bei Vorliegen von qualitativ und quantitativ geringen Spuren wertvolle Hinweise für die Klärung der Spurenlegerschaft bringen kann. Das mitochondriale Erbgut liegt in den Mitochondrien jeder Zelle in Hunderten bis Tausenden Kopien vor, ist stabil gegenüber Degradation und wird maternal vererbt. Deshalb eignet sich die mtDNA besonders für paläogenetische Analysen und für die Rekonstruktion der Evolutionsgeschichte des Menschen. In der forensischen Analyse etablierte sich die mtDNA für jene Spuren, deren konventionelle Zellkern-DNA-Analyse keine Ergebnisse liefert (z. B. bei Haarschäften, Knochen- und Zahnproben). Für die biostatistische Bewertung von mtDNA-Ergebnissen in der Fallarbeit werden mtDNA-Datenbanken befragt, um die relative Häufigkeit der Haplotypen in der Bevölkerung abzuschätzen. Da die mtDNA entlang einer Phylogenie vererbt wird, spielen evolutionsbiologische Erkenntnisse auch bei der Interpretation der Ergebnisse im konkreten forensischen Fall eine Rolle.

Abstract

The analysis of mitochondrial DNA (mtDNA) represents a technological niche in forensic cases where samples have to be identified that contain only nuclear DNA of limited quality and quantity. The high copy number, the increased stability against degradation and the strict maternal inheritance are the main characteristics of the mitochondrial genome which makes it particularly suitable for palaeogenetic inferences and the reconstruction of human evolution. In forensic analyses mtDNA profiling is an established technological resource for cases where conventional nuclear DNA markers fail to give satisfactory results (e.g. analyses of hair shafts, remains of bones and teeth). Substantial collections of validated mtDNA sequences are essential for a meaningful biostatistical evaluation of mtDNA profiles in a given case as the relative frequencies of the haplotypes can only be determined from adequate mtDNA databases. As mtDNA is inherited along a phylogeny, evolutionary features are also important for the interpretation of the data in individual case examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147–147

    Article  PubMed  CAS  Google Scholar 

  2. Bär W, Brinkmann B, Budowle B et al (2000) Guidelines for mitochondrial DNA typing. DNA Commission of the International Society for Forensic Genetics. Vox Sang 79:121–125

    Article  PubMed  Google Scholar 

  3. Balding DJ, Nichols RA (1994) DNA-Profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. Forensic Sci Int 64:125–140

    Article  PubMed  CAS  Google Scholar 

  4. Bandelt HJ, Kong QP, Parson W, Salas A (2005) More evidence for non-maternal inheritance of mitochondrial DNA? J Med Genet 42:957–960

    Article  PubMed  CAS  Google Scholar 

  5. Bandelt HJ, Macaulay V, Richards M (eds) (2006) Human mitochondrial DNA and the evolution of homo sapiens, Series 18. In: Gross HJ (ed) Nucleic acids and molecular biology. Springer, Berlin Heidelberg New York Tokio, ISBN-10 3-540-31788-0

  6. Bandelt HJ, Parson W (2008) Consistent treatment of length variants in the human mtDNA control region: a reappraisal. Int J Legal Med 122:11–12

    Article  PubMed  Google Scholar 

  7. Brandstätter A, Peterson CT, Irwin JA et al (2004) Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database. Int J Legal Med 118:294–306

    Article  PubMed  Google Scholar 

  8. Eichmann C, Parson W (2008) „Mitominis“: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples. Int J Legal Med 122:385–388

    Article  PubMed  Google Scholar 

  9. Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis – validation and use for forensic casework. Forensic Sci Rev 11:21–50

    Google Scholar 

  10. Ivanov PL, Wadhams MJ, Roby RK et al (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12:417–420

    Article  PubMed  CAS  Google Scholar 

  11. Jobling MA, Gill P (2004) Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5:739–751

    Article  PubMed  CAS  Google Scholar 

  12. Lutz-Bonengel S, Sänger T, Parson W et al (2008) Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic. Int J Legal Med 122:189–197

    Article  PubMed  Google Scholar 

  13. Niederstätter H, Köchl S, Grubwieser P et al (2007) A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA. Forensic Sci Int Genet 1:29–34

    Article  PubMed  Google Scholar 

  14. Parson W, Brandstätter A, Alonso A et al (2004) The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives. Forensic Sci Int 139:215–226

    Article  PubMed  CAS  Google Scholar 

  15. Parson W, Dür A (2007) EMPOP – a forensic mtDNA database. Forensic Sci Int Genet 1:88–92

    Article  PubMed  Google Scholar 

  16. Prinz M, Carracedo A, Mayr WR et al; DNA Commission of the International Society for Forensic Genetics (ISFG) (2007) Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet 1:3–12

    Article  PubMed  CAS  Google Scholar 

  17. Russell PJ (2005) iGenetics: a molecular approach. Benjamin-Cummings, San Francisco

  18. Tully G, Bär W, Brinkmann B et al (2001) Considerations by the European DNA-Profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124:83–91

    Article  PubMed  CAS  Google Scholar 

  19. Tully G, Barritt SM, Bender K et al (2004) Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts. Forensic Sci Int 140:1–11

    Article  PubMed  CAS  Google Scholar 

  20. Underhill PA, Kivisild T (2007) Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu Rev Genet 41:539–564

    Article  PubMed  CAS  Google Scholar 

  21. Van Oven M, Kayser M (2008) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–394, DOI 10.1002/humu.20921

    Article  Google Scholar 

  22. Wallace DC, Brown MD, Lott MT (1999) Mitochondrial DNA variation in human evolution and disease. Gene 238:211–230

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Parson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parson, W. Bedeutung der mtDNA-Analyse für forensische Fragestellungen. Rechtsmedizin 19, 183–194 (2009). https://doi.org/10.1007/s00194-009-0594-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-009-0594-3

Schlüsselwörter

Keywords

Navigation