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Abstract. A robust Kalman ®lter is derived for rank
de®cient observation models. The datum for the Kalman
®lter is introduced at the zero epoch by the choice of a
generalized inverse. The robust ®lter is obtained by
Bayesian statistics and by applying a robust M-estimate.
Outliers are not only looked for in the observations but
also in the updated parameters. The ability of the robust
Kalman ®lter to detect outliers is demonstrated by an
example.
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1 Introduction

Parameters in a dynamic system are generally estimated
by the Kalman ®lter, see for instance Arent et al. (1992),
Schwarz (1983). Like all parameter estimations which
minimize the sum of squares of the residuals the Kalman
®lter is sensitive to outliers. Thus, a robust Kalman ®lter
should be applied if data contaminated by outliers are to
be processed. This problem was solved by Masreliez and
Martin (1977), who applied heavy-tailed Gaussian and
non-Gaussian distributions to account for outliers. A
more e�cient robust Kalman ®lter based on polynomial
interpolation was developed by Tsai and Kurz (1983).
Wang and Kubik (1993) derived a robust Kalman ®lter
by the variance-in¯ation model. To the normal distri-
bution containing the variances for the observations a
second normal distribution is added which has larger
variances than the ®rst, thus accommodating outliers. A
di�erent approach of rendering the Kalman ®lter robust
was presented by Teunissen (1990), who uses a recursive

testing procedure to eliminate outliers. Finally, Scha�rin
(1995) proposed a look-ahead ®lter which takes some
future observations for the update and therefore has
smaller mean square error than the common Kalman
®lter.

In this paper we will render robust the Kalman ®lter
by following Huber (1964) and by applying his robust
M-estimate (Huber 1981, p. 43) which is now considered
a breakthrough in statistics (Hampel 1992). The big
advantage of Huber's M-estimate is its simple derivation
and easy implementation by an iterative downweighting
of the outlying observations within the method of least
squares. In the robust Kalman ®lter derived here outliers
are not only downweighted in the observations but also
in the updated parameters, thus checking the dynamic
system. This procedure has similarities to the wave al-
gorithm of Salychev and Scha�rin (1992), which con-
trols the linear dynamic system by a non-random
impulse vector. In addition, by modifying the M-esti-
mate, methods for detecting outliers in leverage points
are discussed by applying the method of severe down-
weighting given by Koch (1996).

We use Bayesian statistics for the derivation of the
robust Kalman ®lter similar to the approach of Koch
(1990, p. 92) and Yang (1991). The resulting posterior
density may then be used to compute con®dence regions
for the unknown parameters and test hypotheses, as was
shown for the robust estimation in linear models by
Koch and Yang (1998).

If the linear model for the observations connected
with the Kalman ®lter has a rank de®ciency, the datum
for the Kalman ®lter needs to be established. Stelzer and
Papo (1994) therefore minimized the norm of the un-
known parameters in addition to the norm of the re-
siduals and introduced linear constraints to maintain a
consistent datum through all epochs of observations.
They arrived at ®lter equations which are similar to the
common Kalman ®lter. In the following the datum is
introduced at the zero epoch by the choice of a gener-
alized inverse and then propagated by the dynamic
system through all epochs of observations thus obtain-
ing a datum common to all epochs.Correspondence to: K. R. Koch
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A free planar network established by distance mea-
surements for the detection of movements is used to test
the robust Kalman ®lter.

2 Kalman ®lter with arbitrary datum de®nitions

Let the linear dynamic system be given by

bk�1 � U�k � 1; k�bk � wk �2:1�
with

E�wk� � 0; D�wk� � Qk; k 2 f1; . . . ;N ÿ 1g
where bk denotes the u� 1 vector of unknown random
parameters, the so-called state vector, at the epoch
k;U�k � 1; k� the u� u transition matrix with
rkU�k � 1; k� � u, wk the u� 1 vector of random
disturbances with the expected value E�wk� � 0 and
the positive de®nite covariance matrix D�wk� � Qk. Let
the nk � 1 vector yk of observations at the epoch k
establish the linear model not of full rank

E�ykjbk� � Xkbk �2:2�
with

rk�Xk� � q < u;D�yk� � r2Pÿ1k

where Xk denotes the nk � u matrix of coe�cients, Pk the
nk � nk positive de®nite weight matrix of yk and r2 the
variance factor which is assumed to be known.

Let the random disturbances wk and wk�1, the ob-
servations yk and yk�1 for k 6� k � 1 and wk and yk be
independent and normally distributed

wk � N�0;Qk� �2:3�

ykjbk � N�Xkbk; r
2Pÿ1k � �2:4�

The Kalman ®lter estimates the unknown parameters
recursively and is therefore well suited to a derivation by
Bayesian statistics, which will be applied in the follow-
ing. The Kalman ®lter starts with the estimate b̂1;0 of b1
and its covariance matrix R1;0, which are given by prior
information. As will be shown, the matrix R1;0 is positive
de®nite. The ®rst index in b̂1;0 and R1;0 refers to the
epoch of b1 and the second index to the epoch of the
observations y0, by which the prior information is
introduced.

The prior distribution of bk given the observation
vectors y1; . . . ; ykÿ1 is derived by recursively applying
Bayes' theorem (Koch 1990, p. 94)

bkjy1; . . . ; ykÿ1 � N�b̂k;kÿ1;Rk;kÿ1� �2:5�
with

Rk;kÿ1 � r2Nÿ1k;kÿ1 �2:6�

where b̂k;kÿ1 denotes the estimate of bk using the data up
to epoch k ÿ 1, Rk;kÿ1 its positive de®nite covariance

matrix and Nk;kÿ1 its positive de®nite matrix of normal
equations.

The posterior density of bk follows with Bayes' the-
orem and Eq. (2.4) by

p�bkjy1; . . . ; yk�
/ exp

n
ÿ 1

2r2
��bk ÿ b̂k;kÿ1�0Nk;kÿ1�bk ÿ b̂k;kÿ1�

� �yk ÿ Xkbk�0Pk�yk ÿ Xkbk��
o

�2:7�

By di�erentiating the exponent with respect to bk and by
setting the derivatives equal to zero we obtain the MAP
(maximum a posteriori) estimate b̂k;k of bk which is
identical with the Bayes estimate

b̂k;k � �X0kPkXk �Nk;kÿ1�ÿ1�X0kPkyk �Nk;kÿ1b̂k;kÿ1�
�2:8�

and its covariance matrix Rk;k

Rk;k � r2�X0kPkXk �Nk;kÿ1�ÿ1 �2:9�
Although X0kPkXk has rk�X0kPkXk� � q because of Eq.
(2.2), Rk;k is positive de®nite since Nk;kÿ1 is positive
de®nite.

The estimate b̂k;kÿ1 and its covariance matrix Rk;kÿ1
are obtained by updating b̂kÿ1;kÿ1 and Rkÿ1;kÿ1 by means
of the dynamic system given by Eq. (2.1):

b̂k;kÿ1 � U�k; k ÿ 1�b̂kÿ1;kÿ1 �2:10�

Rk;kÿ1 � U�k; k ÿ 1�Rkÿ1;kÿ1U0�k; k ÿ 1� �Qkÿ1 �2:11�
These relations follow by the theorem for the linear
transformation of normally distributed random vari-
ables.

Equations (2.8)±(2.11) establish the Kalman ®lter in a
form which is computationally ine�cient. We therefore
apply two matrix identities to Eqs. (2.8) and (2.9), see
for instance Koch (1988, p. 39), and obtain with Eq.
(2.6)

b̂k;k � b̂k;kÿ1 � Fk�yk ÿ Xkb̂k;kÿ1� �2:12�

Fk � Rk;kÿ1Xk
0�XkRk;kÿ1Xk

0 � r2Pÿ1k �ÿ1 �2:13�

Rk;k � �Iÿ FkXk�Rk;kÿ1 �2:14�
Equations (2.12)±(2.14) together with Eqs. (2.10) and
(2.11) establish the well-known Kalman ®lter.

Since the observation model of Eq. (2.2) is not of full
rank, a datum needs to be established. It will be de®ned
at the zero epoch from which the prior information re-
sults. Let us assume that Eqs. (2.1) and (2.2) are also
valid for the zero epoch. Unbiasedly estimable para-
meters are found by a projection and the estimates b̂0;0
of the parameters b0 of the zero epoch are given by
Koch (1990, p. 79)

b̂0;0 � �X 00P0X0�ÿrsX
0
0P0y0 �2:15�
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with their covariance matrix

R0;0 � r2�X 00P0X0�ÿrs �2:16�
which is positive semide®nite. The choice of the
symmetrical re¯exive generalized inverse �X00P0X0�ÿrs of
the matrix X00P0X0 of normal equations establishes the
datum. By applying Eqs. (2.10) and (2.11) the prior
information b̂1;0 and R1;0 is obtained by which the
Kalman ®lter starts as already mentioned. Since Q0 in
Eq. (2.11) is positive de®nite, R1;0 is also positive
de®nite, although R0;0 is positive semide®nite. Thus,
the datum is propagated through all epochs of observa-
tions by Eqs. (2.10) and (2.11) after it has been de®ned at
the zero epoch.

3 Robust Kalman ®lter

Robust parameter estimation is well founded only for
independent observations. We therefore assume for Pk
in Eq. (2.2)

Pk � diag�p1k; . . . ; pnkk� �3:1�
We will not only look for outliers in the observations yk
but also in the parameters b̂k;kÿ1, thus checking the
dynamic system. We therefore apply the Cholesky
factorization to the positive de®nite matrix Nk;kÿ1

Nk;kÿ1 � GkG
0
k �3:2�

where Gk denotes a u� u regular lower triangular
matrix. Thus, the posterior density of bk follows from
Eq. (2.7) by

p�bkjy1; . . . ; yk�
/ expfÿ 1

2r2
��G0kbk ÿ G0kb̂k;kÿ1�0�G0kbk ÿ G0kb̂k;kÿ1�

��yk ÿ Xkbk�0Pk�yk ÿ Xkbk��g
or

p�bkjy1; . . . ; yk�

/ exp ÿ 1

2r2

yk

G0kb̂k;kÿ1

�����
�����ÿ Xk

G0k

�����
�����bk

 !0"(

Pk 0

0 I

�����
����� yk

G0kb̂k;kÿ1

�����
�����ÿ Xk

G0k

�����
�����bk

 !#)
and ®nally

p�bkjy1; . . . ; yk�
/ expfÿ 1

2r2
��~yÿ ~Xbk�0~P�~yÿ ~Xbk��g �3:3�

Instead of the normal distribution a distribution
contaminated by outliers is assumed. Thus, the M-esti-
mate instead of the MAP-estimate is applied which
means not

Xm

i�1
~pi~e

2
i ! minimum

with m � nk � u, ~e � ~Xbk ÿ ~y � �~ei� and ~P � diag�~pi�,
butXm

i�1
q

����
~pi

p
~ei

r

 !
! minimum

where q . . .� � denotes the score function. With bk � bl� �,
~X � xil� �, w . . .� � the derivative of q . . .� � and
o

obl
q

���
~p
p

i~ei

r

� �
� w

���
~p
p

i~ei

r

� � ���
~p
p

ixil

r
; l 2 f1; . . . ; ug

we obtain the M-estimate

1

r

Xm

i�1

���
~p

p
iw

���
~p
p

i~̂ei

r

 !
xil � 0; l 2 f1; . . . ; ug

with ~̂e � ~Xb̂k;k ÿ ~y � ~̂ei
ÿ �

:
By introducing the equivalent weights

wi � ~piw

���
~p
p

i~̂ei

r

 !, ���
~p
p

i~̂ei

r

 !
�3:4�

we ®nd

1

r2
Xm

i�1
wi~̂eixil � 0

or with W � diag�w1; . . . ;wm�
~X0W~̂e � 0

and ®nally

~X0W~Xb̂k;k � ~X0W~y �3:5�
We apply the ``least informative'' density given by
Huber (1981, p. 71) and obtain

w
���
~pi

p
~̂ei

r

� �
�

���
~pi

p
~̂ei

r for

���
~pi

p
r j~̂eij � c

w
���
~pi

p
~̂ei

r

� �
� c ~̂ei

j~̂eij for

���
~pi

p
r j~̂eij > c

where generally c = 1.5. The equivalent weights follow
from Eq. (3.4) by

wi � ~pi for
���
~p
p

ij~̂eij � rc

wi � cr
��
~p
p

i

j~̂eij for
���
~p
p

ij~̂eij > rc
�3:6�

With

~̂e � êky

êkb

���� ���� � Xk

G0k

���� ����b̂k;k ÿ
yk

G0kb̂k;kÿ1

���� ����
and

W � Wky 0

0 Wkb

���� ����
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we obtain from Eq. (3.5) the robust estimate b̂k;k

b̂k;k � �X0kWkyXk � GkWkbG
0
k�ÿ1

�X0kWkyyk � GkWkbG
0
kb̂k;kÿ1� �3:7�

The equivalent weights for the observations yk in Eq.
(3.7) result with

Wky � diag�wiy�; êik � �êik�
from Eqs. (3.1) and (3.6) by

wiy � pik for
���
p
p

ikjêikj � rc

wiy � cr
��
p
p

ik
jêik j for

���
p
p

ikjêikj > rc
�3:8�

The equivalent weights for the updated and transformed
parameters G0kb̂k;kÿ1 are obtained with

Wkb � diag�wib�; êkb � �êib�
from Eq. (3.6) by

wib � 1 for jêibj � rc

wib � cr
jêibj for jêibj > rc

�3:9�

The two matrix identities already mentioned are applied
to Eq. (3.7) and lead together with Eqs. (2.6), (2.10) and
(2.11) to

b̂k;k � b̂k;kÿ1 � Fk�yk ÿ Xkb̂k;kÿ1� �3:10�

Fk � ~Rk;kÿ1X0k�Xk ~Rk;kÿ1X0k � r2Wÿ1ky �ÿ1 �3:11�

Rk;k � �Iÿ FkXk�~Rk;kÿ1 �3:12�

~Rk;kÿ1 � r2�GkWkbG
0
k�ÿ1 �3:13�

b̂k;kÿ1 � U�k; k ÿ 1�b̂kÿ1;kÿ1 �3:14�

Rk;kÿ1 � U�k; k ÿ 1�Rkÿ1;kÿ1U0�k; k ÿ 1� �Qkÿ1 �3:15�

GkG
0
k � Nk;kÿ1 � r2Rÿ1k;kÿ1 �3:16�

This is the robust Kalman ®lter. After updating the
estimate b̂kÿ1;kÿ1 and its covariance matrix Rkÿ1;kÿ1 by
Eqs. (3.14) and (3.15), Nk;kÿ1 is computed and decom-
posed by Eq. (3.16). The estimate b̂k;k is then iteratively
computed by Eqs. (3.10)±(3.13) such that outliers in the
observations yk and in the updated and transformed

parameters G0kb̂k;kÿ1 are downweighted according to
Eqs. (3.8) and (3.9). If b̂�m�1�k;k denotes the estimate of
iteration m� 1, we obtain from Eqs. (3.10)±(3.13)

b̂�m�1�k;k � b̂k;kÿ1 � F
�m�
k �yk ÿ Xkb̂k;kÿ1�

F
�m�
k � ~R�m�k;kÿ1X

0
k Xk ~R�m�k;kÿ1X

0
k � r2 W

�m�
ky

� �ÿ1� �ÿ1

R�m�1�k;k � Iÿ F
�m�
k Xk

� �
~R�m�k;kÿ1

~R�m�k;kÿ1 � r2 G0kW
�m�
kb Gk

� �ÿ1
�3:17�

If outliers are looked for only in the observations yk,
then Wkb � I and the iterations for the robust Kalman
®lter follow with

b̂�m�1�k;k � b̂k;kÿ1 � F
�m�
k yk ÿ Xkb̂k;kÿ1
� �

F
�m�
k � Rk;kÿ1X0k XkRk;kÿ1X0k � r2 W

�m�
ky

� �ÿ1� �ÿ1

R�m�1�k;k � Iÿ F
�m�
k Xk

� �
Rk;kÿ1 �3:18�

together with the updates in Eqs. (3.14) and (3.15). The
equivalent weights Wky are determined by Eq. (3.8).

If leverage points exist in the data, the downweight-
ing is not su�cient to detect outliers in these points. A
more drastic downweighting is attained by the equiva-
lent weights (Koch 1996)

wiy � pikrp=2
i =rD for

���
p
p

ikjêik j � crrp=2
i =rD

wiy � cr
��
p
p

ikrp
i

r2Djêik j for
���
p
p

ikjêik j > crrp=2
i =rD

�3:19�
with ri being the redundancy number

ri � �Iÿ Xk X0kPkXk�ÿ1X0kPk

� �
ii

and

rD � 1

nk

Xnk

i�1
rp=2

i �3:20�

A good choice for p=2 is p=2 � 8. But a smaller value
may be used if some redundancy numbers turn out to be
small. An outlier search by the weights in Eq. (3.19) has
to be preceded by a search with Eq. (3.8), since the
weights in Eq. (3.19) prevent outliers to be detected
which are found by Eq. (3.8) (Koch 1996).

4 Test computations

A planar free network established by distance measure-
ments for the detection of movements of ten points is
used to test the robust Kalman ®lter. The rank
de®ciency uÿ q of the model given by Eq. (2.2) is
uÿ q � 3. Four epochs of observations are given each
consisting of 46 measurements of about 3 to 8 km in
length. The standard deviations of the independent
observations vary between 4 and 9 mm as functions of
the length of the distances. The weights in Eq. (2.2) are
chosen such that r2 � 1. The observational setup is not
changed between the epochs. A zero epoch of distance
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measurements is also available. It is used to compute the
prior information b̂0;0 on the unknown coordinates and
its covariance matrix R0;0 according to Eqs. (2.15) and
(2.16). The datum for the planar network is established
by choosing the pseudo-inverse as symmetrical re¯exive
generalized inverse in Eqs. (2.15) and (2.16).

To make a sensible choice for the covariance matrix
Qk of the random disturbances wk in Eq. (2.1), one has
to keep in mind that in this example the robust Kalman
®lter should detect deformations. Setting Qk � 0 would
correspond to a recursive estimation. With each epoch
the covariance matrix Rk;kÿ1 would yield smaller vari-
ances and movements could not be detected anymore.
Rk;kÿ1 should therefore re¯ect not only the variances and
covariances of the coordinates of epoch k ÿ 1, but also
of the previous epoch k ÿ 2, hence

Rk;kÿ1 � U�k; k ÿ 1��Rkÿ1;kÿ1 � diagRkÿ1;kÿ2�U0�k; k ÿ1�
�4:1�

where diag Rkÿ1;kÿ2 means the diagonal matrix with its
diagonal elements from Rkÿ1;kÿ2, and therefore in
comparison with Eqs. (2.11) or (3.15)

Qkÿ1 � U�k; k ÿ 1�diagRkÿ1;kÿ2U0�k; k ÿ 1� �4:2�
Distortions or movements of the whole network are very
unlikely, hence we set

U�k � 1; k� � I �4:3�
in Eqs. (2.10) and (2.11) and in Eqs. (3.14) and (3.15).
However, movements of single points are expected. We
have k ÿ 1 � 0 at the zero epoch so that the matrix R0;ÿ1
is not available in Eqs. (4.1) and (4.2). We therefore set

R0;ÿ1 � R0;0 �4:4�
where R0;0, as already mentioned, is the pseudo-inverse
which establishes the datum, and obtain by Eq. (4.1) the
positive de®nite covariance matrix R1;0.

Fig. 2. Sum of movements in x (top) and y (bottom) over four epochs
at ten points after introducing 10 additional outliers,�: Kalman ®lter,
d: robust Kalman ®lter for outliers in the observations, 4: robust
Kalman ®lter for outliers in the observations and in the updated and
transformed parameters

Fig. 1. Sum of movements in x (top) and y (bottom) over four epochs
at ten points, �: Kalman ®lter, d: robust Kalman ®lter for outliers in
the observations, 4: robust Kalman ®lter for outliers in the
observations and in the updated and transformed parameters
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The four epochs of distance measurements have been
analyzed by the Kalman ®lter of Eqs. (2.10)±(2.14), the
robust Kalman ®lter of Eq. (3.18) for outliers in the
observations and the robust Kalman ®lter of Eqs.
(3.10)±(3.16) for outliers in the observations and the
updated and transformed parameters. The equivalent
weights in Eqs. (3.8) and (3.9) were used by putting
c � 1:5. The movements of the ten points over the four
epochs are of interest. The sum of those movements
expressed in x- and y-coordinates is therefore shown in
Fig. 1. The sum is obtained by forming the coordinate
di�erences between the last epoch and the zero epoch,
i.e., b̂4;4 ÿ b̂0;0.

The results of the Kalman ®lter and the two robust
Kalman ®lters agree very well, the results of the two
robust Kalman ®lters are nearly identical. No serious
outliers are therefore present in the data. Nevertheless, a
total of 34 observations were downweighted by the ro-
bust Kalman ®lter for outliers in the observations and 36
observations and 6 updated coordinates in the robust
Kalman ®lter for outliers in the observations and in the
updated coordinates. Ten outliers of the magnitude �3:5
cm were then added to the observations of epoch 3. The
results are again expressed by the sum of movements of
the ten points over the four epochs and given in Fig. 2.

The results of the Kalman ®lter now di�er from the
results of the two robust Kalman ®lters. Both robust
®lters identify the ten outliers in epoch 3. The results of
these two ®lters agree very well, although the outliers in
the observations a�ect the coordinates so that outliers
are also found in the coordinates updated for epoch 4.
The robust Kalman ®lters eliminate the outliers very
well, since the sum of movements given by these ®lters
and shown in Fig. 2 are very similar to the movements
shown in Fig. 1.
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