Skip to main content
Log in

Study on one-step simulation for the bending process of extruded profiles

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Traditional one-step approaches are either based on the membrane element in which bending effects cannot be considered or based on the simplified shell element in which the initial blank is flat and the curvatures are kept unchanged in the one-step iterative computation. They are not suitable for the bending process of extruded profiles. In order to inspect the formability and possible forming defects in profile bending for preliminary designs quickly and to provide an efficient finite element computation for process analysis, a new one-step approach is presented. In this approach, instead of the traditional simplified shell element, the rotation-free basic shell triangular element is introduced to consider bending effects and make the new one-step approach suited to the simulation of profile bending. On the basis of the presented one-step approach, an in-house program named profile bending simulation-one step (PBS-ONESTEP) has been developed to simulate stretch bending of aluminum extrusions and three-point bending of stainless steel extrusions. The algorithm for initial guess solution of extruded profiles is described. Sliding constraint and the penalty method are adopted to treat contacts for the two numerical examples, respectively. The numerical results of PBS-ONESTEP simulation are compared with those of ABAQUS/EXPLICIT incremental analyses and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paulsen F, Welo T (1996) Application of numerical simulation in the bending of aluminium–alloy profiles. J Mater Process Technol 58:274–285. doi:10.1016/0924-0136(95)02152-3

    Article  Google Scholar 

  2. Clausen AH, Hopperstad OS, Langseth M (2000) Stretch bending of aluminium extrusions for car bumpers. J Mater Process Technol 102:241–248. doi:10.1016/S0924-0136(99)00487-2

    Article  Google Scholar 

  3. Gantner P, Bauer H, Harrison DK, De Silva AKM (2005) Free-bending—a new bending technique in the hydroforming process chain. J Mater Process Technol 167:302–308. doi:10.1016/j.jmatprotec.2005.05.052

    Article  Google Scholar 

  4. Yu ZQ, Lin ZQ (2007) Numerical analysis of dimension precision of U-shaped aluminium profile rotary stretch bending. Trans Nonferr Met Soc China 17:581–585. doi:10.1016/S1003-6326(07)60137-X

    Article  Google Scholar 

  5. Gu RJ, Yang H, Zhan M, Li H (2006) Thin-walled aluminum alloy tube NC precision bending based on finite element simulation. Trans Nonferr Met Soc China 16:1251–1255

    Google Scholar 

  6. Murata M, Kuboki T, Takahashi K, Goodarzi M, Jin Y (2008) Effect of hardening exponent on tube bending. J Mater Process Technol 201:189–192. doi:10.1016/j.jmatprotec.2007.11.286

    Article  Google Scholar 

  7. Yang JB, Jeon BH, Oh SI (2001) The tube bending technology of a hydroforming process for an automotive part. J Mater Process Technol 111:175–181. doi:10.1016/S0924-0136(01)00505-2

    Article  Google Scholar 

  8. Trana K (2002) Finite element simulation of the tube hydroforming process—bending, preforming and hydroforming. J Mater Process Technol 127:401–408. doi:10.1016/S0924-0136(02)00432-6

    Article  Google Scholar 

  9. Clausen AH, Hopperstad OS, Langseth M (2001) Sensitivity of model parameters in stretch bending of aluminium extrusions. Int J Mech Sci 43:427–453. doi:10.1016/S0020-7403(00)00012-6

    Article  MATH  Google Scholar 

  10. Miller JE, Kyriakides S (2003) Three-dimensional effects of the bend–stretch forming of aluminum tubes. Int J Mech Sci 45:115–140. doi:10.1016/S0020-7403(03)00036-5

    Article  MATH  Google Scholar 

  11. Yang H, Li H, Zhan M, Gu RJ (2006) Explicit FE wrinkling simulation and method to catch critical bifurcation point in tube bending process. Trans Nonferr Met Soc China 16:1242–1246

    Google Scholar 

  12. Gu RJ, Yang H, Zhan M, Li H, Li HW (2008) Research on the springback of thin-walled tube NC bending based on the numerical simulation of the whole process. Comput Mater Sci 42:537–549. doi:10.1016/j.commatsci.2007.09.001

    Article  Google Scholar 

  13. Li H, Yang H, Zhan M, Gu RJ (2007) The interactive effects of wrinkling and other defects in thin-walled tube NC bending process. J Mater Process Technol 187–188:502–507. doi:10.1016/j.jmatprotec.2006.11.100

    Article  Google Scholar 

  14. Wang J, Agarwal R (2006) Tube bending under axial force and internal pressure. J Manuf Sci Eng 128:598–605. doi:10.1115/1.2112987

    Article  Google Scholar 

  15. Guo YQ, Batoz JL, Detraux JM, Duroux P (1990) Finite element procedures for strain estimations of sheet metal forming parts. Int J Numer Methods Eng 30:1385–1401. doi:10.1002/nme.1620300804

    Article  MATH  Google Scholar 

  16. Nguyen BN, Johnson KI, Khaleel MA (2003) Analysis of tube hydroforming by means of an inverse approach. J Manuf Sci Eng 125:369–377. doi:10.1115/1.1559166

    Article  Google Scholar 

  17. Huang Y, Chen YP, Du RX (2006) A new approach to solve key issues in multi-step inverse finite-element method in sheet metal stamping. Int J Mech Sci 48:591–600. doi:10.1016/j.ijmecsci.2006.01.007

    Article  Google Scholar 

  18. Batoz JL, Guo YQ, Mercier F (1998) The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. Eng Comput 15:864–892. doi:10.1108/02644409810236894

    Article  MATH  Google Scholar 

  19. Naceur H, Guo YQ, Ben-Elechi S (2006) Response surface methodology for design of sheet forming parameters to control springback effects. Comput Struct 84:1651–1663. doi:10.1016/j.compstruc.2006.04.005

    Article  Google Scholar 

  20. Tang BT, Sun JX, Zhao Z, Chen J, Ruan XY (2006) Optimization of drawbead design in sheet forming using one step finite element method coupled with response surface methodology. Int J Adv Manuf Technol 31:225–234. doi:10.1007/s00170-005-0208-5

    Article  Google Scholar 

  21. Naceur H, Delaméziere A, Bztoz JL, Guo YQ, Knopf-Lenoir C (2004) Some improvements on the optimum process design in deep drawing using the inverse approach. J Mater Process Technol 146:250–262. doi:10.1016/j.jmatprotec.2003.11.015

    Article  Google Scholar 

  22. Naceur H, Guo YQ, Batoz JL (2004) Blank optimization in sheet metal forming using an evolutionary algorithm. J Mater Process Technol 151:183–191. doi:10.1016/j.jmatprotec.2004.04.036

    Article  Google Scholar 

  23. Tang BT, Zhao Z, Wang Y (2007) One-step FEM-based evaluation of weld line movement and development of blank in sheet metal stamping with tailor-welded blanks. Int J Adv Manuf Technol 35:268–279. doi:10.1007/s00170-006-0715-z

    Article  Google Scholar 

  24. Chung K, Richmond O (1992) Ideal forming—I: homogeneous deformation with minimum plastic work. Int J Mech Sci 34:575–591. doi:10.1016/0020-7403(92)90032-C

    Article  MATH  Google Scholar 

  25. Chung K, Yoon JW, Richmond O (2000) Ideal sheet forming with frictional constraints. Int J Plast 16:595–610. doi:10.1016/S0749-6419(99)00068-6

    Article  MATH  Google Scholar 

  26. Yoon JW, Chung K, Pourboghrat F, Barlat F (2006) Design optimization of extruded preform for hydroforming processes based on ideal forming design theory. Int J Mech Sci 48:1416–1428. doi:10.1016/j.ijmecsci.2006.07.003

    Article  Google Scholar 

  27. Lee CH, Huh H (1998) Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation. J Mater Process Technol 82:145–155. doi:10.1016/S0924-0136(98)00034-X

    Article  Google Scholar 

  28. Lan J, Dong XH, Li ZG (2005) Inverse finite element approach and its application in sheet metal forming. J Mater Process Technol 170:624–631. doi:10.1016/j.jmatprotec.2005.06.043

    Article  Google Scholar 

  29. Oñate E, Flores FG (2005) Advances in the formulation of the rotation-free basic shell triangle. Comput Methods Appl Mech Eng 194:2406–2443. doi:10.1016/j.cma.2004.07.039

    Article  MATH  Google Scholar 

  30. Kim SH, Huh H (2002) Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis. J Mater Process Technol 130–131:482–489. doi:10.1016/S0924-0136(02)00791-4

    Article  Google Scholar 

  31. LSTC (2006) LS-DYNA theory manual. Technical Report

  32. Wang SP, Nakamachi E (1997) The inside–outside contact search algorithm for finite element analysis. Int J Numer Mech Eng 40:357–371

    Article  MathSciNet  Google Scholar 

  33. Zhang XL (2004) Research on high precision bending process of aluminum alloy profile. Master’s dissertation, Beijing University of Aeronautics and Astronautics (in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, L., Dong, X. & Wang, P. Study on one-step simulation for the bending process of extruded profiles. Int J Adv Manuf Technol 43, 1069–1080 (2009). https://doi.org/10.1007/s00170-008-1786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1786-9

Keywords

Navigation