Skip to main content
Log in

Convective and absolute instabilities in non-Boussinesq mixed convection

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of non-Boussinesq mixed convection in a vertical channel formed by two differentially heated infinite plates is investigated and the complete convective/absolute instability boundary is computed for a wide range of physical parameters. A physical insight into the mechanisms causing instabilities is given. In particular, it is shown that the appearance of absolute instability is always dictated by a flow reversal within a channel; however, existence of the flow reversal does not exclude the possibility of convective instability. It is also shown that fluid’s non-linear transport property variations have a dramatic effect on the structure and complexity of spatio-temporal instabilities of the co-existing buoyancy and shear modes as the temperature difference across the channel increases. The validity of the stability results obtained using the procedure described in Suslov (J Comp Phys 212, 188–217, 2006) is assessed using the method of steepest descent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor G. (1954). Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Quart. Appl. Math. XII: 209–233

    MathSciNet  Google Scholar 

  2. Bergholtz R.F. (1978). Instability of steady natural convection in a vertical fluid layer. J. Fluid Mech. 84: 743–768

    Article  ADS  Google Scholar 

  3. Bleistein N. and Handelsman R.A. (1986). Asymptotic Expansions of Integrals. Dover Publications, Inc., New York

    Google Scholar 

  4. Brevdo L. (1988). A study of absolute and convective instabilities with an application to the Eady model. Geophys. Astrophys. Fluid Dyn. 40: 1–92

    MATH  ADS  MathSciNet  Google Scholar 

  5. Brevdo L., Laure P., Dias F. and Bridges T. (1999). Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396: 37–71

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Briggs R.J. (1964). Electron-stream interactions with plasmas. Chap. 2. MIT Press, Cambridge

    Google Scholar 

  7. Carrière P. and Monkewitz P.A. (1999). Convective versus absolute instability in mixed Rayleigh-Bénard-Poiseuille convection. J. Fluid Mech. 384: 243–262

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Chenoweth D.R. and Paolucci S. (1985). Gas flow in vertical slots with large horizontal temperature differences. Phys. Fluids 28: 2365–2374

    Article  ADS  Google Scholar 

  9. Chenoweth D.R. and Paolucci S. (1986). Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J. Fluid Mech. 169: 173–210

    Article  MATH  ADS  Google Scholar 

  10. Deissler R.J. (1987). The convective nature of instability in plane Poiseuille flow. Phys. Fluids 30: 2303–2305

    Article  ADS  Google Scholar 

  11. Eckert E. and Carlson W. (1961). Natural convection in an air layer enclosed between two vertical plates with different temperatures. Int. J. Heat Mass Transfer 2: 106–120

    Article  Google Scholar 

  12. Fukui K., Nakajima M., Ueda H., Suzaki K. and Mizushina T. (1982). Flow instability and transport phenomena in combined free and forced convection between vertical parallel plates. J. Chem. Eng. Jpn. 15: 172–180

    Google Scholar 

  13. Huerre P. and Monkewitz P.A. (1990). Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22: 473–537

    Article  ADS  MathSciNet  Google Scholar 

  14. Koch W. (2002). On the spatio-temporal stability of primary and secondary crossflow vortices in a three-dimensional boundary layer. J. Fluid Mech. 456: 85–111

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Lartigue B., Lorente S. and Bourret B. (2000). Multicellular natural convection in a high aspect ratio cavity: experimental and numerical results. Int. J. Heat Mass Transfer 43: 3157–3170

    Article  MATH  Google Scholar 

  16. Lee Y. and Korpela S.A. (1983). Multicellular natural convection in a vertical slot. J. Fluid Mech. 126: 91–121

    Article  MATH  ADS  Google Scholar 

  17. Lingwood R.J. (1997). On the application of the Briggs’ and steepest-descent methods to a boundary layer flow. Stud. Appl. Math. 98: 213–254

    Article  MATH  MathSciNet  Google Scholar 

  18. Mizushima J. and Gotoh K. (1983). Nonlinear evolution of the disturbance in a natural convection induced in a vertical fluid layer. J. Phys. Soc. Jpn. 52: 1206–1214

    Article  ADS  Google Scholar 

  19. Paolucci, S.: On the filtering of sound from the Navier-Stokes equations. Tech. Rep. SAND82-8257, Sandia National Laboratories, Livermore, California (1982)

  20. Rudakov R.N. (1967). Spectrum of perturbations and stability of convective motion between vertical plates. Appl. Math. Mech. 31: 376–383

    Article  Google Scholar 

  21. Suslov S.A. (2001). Flow patterns near codimension-2 bifurcation in non-Boussinesq mixed convection. In: Shalfeev, V. (eds) Proceedings of the International Conference Dedicated to the 100th Anniversary of A.A. Andronov, Progress in Nonlinear Science, vol. 3, pp 363–368. Nizhniy Novgorod, Russia

    Google Scholar 

  22. Suslov S.A. (2006). Numerical aspects of searching convective/absolute instability transition. J. Comp. Phys 212: 188–217

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Suslov S.A. and Paolucci S. (1995). Stability of mixed-convection flow in a tall vertical channel under non-Boussinesq conditions. J. Fluid Mech. 302: 91–115

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Suslov S.A. and Paolucci S. (1995). Stability of natural convection flow in a tall vertical enclosure under non-Boussinesq conditions. Int. J. Heat Mass Transfer 38: 2143–2157

    Article  MATH  Google Scholar 

  25. Suslov S.A. and Paolucci S. (1997). Non-Boussinesq convection in a tall cavity near the codimension-2 point. In: Ulucakli, M.E. (eds) Proceedings of the ASME Heat Transfer Division, vol. 3, HTD-353, pp 243–250. ASME Press, New York

    Google Scholar 

  26. Suslov S.A. and Paolucci S. (1997). Nonlinear analysis of convection flow in a tall vertical enclosure under non-Boussinesq conditions. J. Fluid Mech. 344: 1–41

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Suslov S.A. and Paolucci S. (1999). Nonlinear stability of mixed convection flow under non-Boussinesq conditions. Part 1 Analysis and bifurcations. J. Fluid Mech. 398: 61–85

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Suslov S.A. and Paolucci S. (1999). Nonlinear stability of mixed convection flow under non-Boussinesq conditions. Part 2 Mean flow characteristics. J. Fluid Mech. 398: 87–108

    Article  ADS  MathSciNet  Google Scholar 

  29. Suslov S.A. and Paolucci S. (2004). Stability of non-Boussinesq convection via the complex Ginzburg-Landau model. Fluid Dyn. Res. 35: 159–203

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Wakitani S. (1998). Flow patterns of natural convection in an air-filled vertical cavity. Phys. Fluids 10: 1924–1928

    Article  ADS  Google Scholar 

  31. White F.M. (1974). Viscous Fluid Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  32. Wright J., Jin H., Hollands K. and Naylor D. (2006). Flow visualisation of natural convection in a tall air-filled vertical cavity. Int. J. Heat Mass Transfer 49: 889–904

    Article  Google Scholar 

  33. Zamora B. and Hernández J. (1997). Influence of variable property effects on natural convection flows in an asymmetrically-heated vertical channels. Int. Comm. Heat Mass Transfer 24: 1153–1162

    Article  Google Scholar 

  34. Zhang J., Childress S. and Libchaber A. (1997). Non-Boussinesq effect: Thermal convection with broken symmetry. Phys. Fluids 9: 1034–1042

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zhang J., Childress S. and Libchaber A. (1998). Non-Boussinesq effect: Asymmetric velocity profiles in thermal convection. Phys. Fluids 10: 1534–1536

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Suslov.

Additional information

Communicated by R. Grimshaw.

This work was partially supported by a computing grant from the Australian Partnership for Advanced Computing, 2000–2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suslov, S.A. Convective and absolute instabilities in non-Boussinesq mixed convection. Theor. Comput. Fluid Dyn. 21, 271–290 (2007). https://doi.org/10.1007/s00162-007-0049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-007-0049-y

Keywords

PACS

Navigation