Skip to main content
Log in

Microstructure-based modelling of multiphase materials and complex structures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee S., Ghosh S.K., Datta S., Saha S.K.: Segmentation of dual phase steel micrograph: an automated approach. Measurement 46(8), 2435–2440 (2013) doi: 10.1016/j.measurement.2013.04.057

    Article  Google Scholar 

  2. Bishop J., Hill R.: A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Lond. Edinb. Dublin Philos. Mag. J. Sci 42(327), 414–427 (1951) doi: 10.1080/14786445108561065

    Article  MathSciNet  MATH  Google Scholar 

  3. Böhm, H.: A short introduction to basic aspects of continuum micromechanics. ILSB Arbeitsbericht 206, ILSB, Vienna University of Technology (1998) http://www.researchgate.net/publication/266407356_A_SHORT_INTRODUCTION_TO_BASIC_ASPECTS_OF_CONTINUUM_MICROMECHANICS

  4. Böhm H., Eckschlager A., Han W.: Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput. Mater. Sci. 25(1–2), 42–53 (2002) doi: 10.1016/S0927-0256(02)00248-3

    Article  Google Scholar 

  5. Böhm H., Han W.: Comparisons between three-dimensional and two dimensional multi-particle unit cell models for particle reinforced metal matrix composites. Model. Simul. Mater. Sci. Eng. 9(2), 47–65 (2001) doi: 10.1088/0965-0393/9/2/301

    Article  ADS  Google Scholar 

  6. Bornert M.: Homogénéisation des milieux aléatoires: Bornes et estimations. In: Bornert, M., Bretheau, T., Gilormini, P. (eds.) Homogénéisation en mécanique des materiaux 1. Matériaux aléatoires élastiques et milieux périodiques, pp. 132–221. Editions Hermès, Paris (2001)

    Google Scholar 

  7. Chawla N., Sidhu R., Ganesh V.: Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites. Acta Mater. 54(6), 1541–1548 (2006) doi: 10.1016/j.actamat.2005.11.027

    Article  Google Scholar 

  8. Ciappa M., Malberti P.: Plastic-strain of aluminium interconnections during pulsed operation of IGBT multichip modules. Qual. Reliab. Eng. Int. 12(4), 297–303 (1996) doi: 10.1002/(SICI)1099-1638(199607)12:4<297::AID-QRE21>3.0.CO;2-C

    Article  Google Scholar 

  9. Clayton J.: Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J. Mech. Phys. Solids 53(2), 261–301 (2005) doi: 10.1016/j.jmps.2004.06.009

    Article  ADS  MATH  Google Scholar 

  10. Cox D.R., Isham V.: Point Processes. Monographs on Applied Probability and Statistics. Chapman and Hall, London; New York (1980)

    Google Scholar 

  11. Dehm G., Balk T., Edongué H., Arzt E.: Small-scale plasticity in thin Cu and Al films. Microelect. Eng. 70(2–4), 412–424 (2003) doi: 10.1016/S0167-9317(03)00395-2

    Article  Google Scholar 

  12. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 241(1226), 376–396 (1957) doi: 10.1098/rspa.1957.0133

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fillafer, A.: Fließ- und Mikroschädigungsverhalten ferritisch-martensitischer Dualphasenstähle. Dissertation, TU München (2015)

  14. Fillafer A., Krempaszky C., Werner E.: On strain partitioning and micro-damage behavior of dual-phase steels. Mater. Sci. Eng. A 614, 180–192 (2014) doi: 10.1016/j.msea.2014.07.029

    Article  Google Scholar 

  15. Fischmeister H., Karlsson B.: Plastizitätseigenschaften grob-zweiphasiger Werkstoffe. Zeitschrift für Metall-kunde 68(5), 311–327 (1977)

    Google Scholar 

  16. Hadamard J.: Leçons sur la propagation des ondes et les équations de l’hydro- dynamique, 1 edn. Librairie Scientifique, Paris (1903)

    MATH  Google Scholar 

  17. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Appl. Mech. 11, 127–140 (1963)

    MathSciNet  MATH  Google Scholar 

  18. Heinz W., Pippan R., Dehm G.: Investigation of the fatigue behavior of Al thin films with different microstructure. Mater. Sci. Eng. A 527(29–30), 7757–7763 (2010) doi: 10.1016/j.msea.2010.08.046

    Article  Google Scholar 

  19. Hill R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349–354 (1952) doi: 10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  20. Hill R.: On the problem of uniqueness in the theory of a rigid-plastic solid—III. J. Mech. Phys. Solids 5(3), 153–161 (1957) doi: 10.1016/0022-5096(57)90001-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hill R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958) doi: 10.1016/0022-5096(58)90029-2

    Article  ADS  MATH  Google Scholar 

  22. Hill R.: Acceleration waves in solids. J. Mech. Phys. Solids 10(1), 1–16 (1962) doi: 10.1016/0022-5096(62)90024-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hill R.: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963) doi: 10.1016/0022-5096(63)90036-X

    Article  ADS  MATH  Google Scholar 

  24. Hill R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13(2), 89–101 (1965) doi: 10.1016/0022-5096(65)90023-2

    Article  ADS  MATH  Google Scholar 

  25. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965) doi: 10.1016/0022-5096(65)90010-4

    Article  ADS  Google Scholar 

  26. Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978)

  27. Hill R., Hutchinson J.W.: Bifurcation phenomena in the plane tension test. J. Mech. Phys. Solids 23(4), 239–264 (1975) doi: 10.1016/0022-5096(75)90027-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hiraoka K.: Elastoplastic creep analysis of thermal stress and strain in aluminum interconnects of LSIs. Elect. Commun. Japan Part II Elect. 77(3), 93–105 (1994) doi: 10.1002/ecjb.4420770311

    Article  Google Scholar 

  29. ISO 12004-2:2008: Metallic materials-Sheet and strip-Determination of forming limit curves—Part 2: Determination of forming limit curves in the laboratory. International Organization for Standardization, Geneva, Switzerland (2008)

  30. Jähne B.: Digitale Bildverarbeitung, 7th edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  31. Johnson W., Mehl R.: Reaction kinetics in processes of nucleation and growth. Trans. Metall. Soc. AIME 135, 416–458 (1939)

    Google Scholar 

  32. Kalidindi S., Bronkhorst C., Anand L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40(3), 537–569 (1992) doi:10.1016/0022-5096(92)80003-9

    Article  ADS  Google Scholar 

  33. Kanert, W.: Reliability challenges for power devices under active cycling. In: Reliability Physics Symposium, 2009 IEEE International, pp. 409–415 (2009). doi:10.1109/IRPS.2009.5173288

  34. Kanert, W., Pufall, R., Wittler, O., Dudek, R., Bouazza, M.: Modelling of metal degradation in power devices under active cycling conditions. pp. 1/6–6/6. IEEE (2011). doi:10.1109/ESIME.2011.5765771

  35. Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003) doi:10.1016/S0020-7683(03)00143-4

    Article  MATH  Google Scholar 

  36. Kenesei P., Borbély A., Biermann H.: Microstructure based three dimensional finite element modeling of particulate reinforced metal–matrix composites. Mater. Sci. Eng. A 387–389, 852–856 (2004) doi:10.1016/j.msea.2004.02.076

    Article  Google Scholar 

  37. Kouznetsova, V.: Computational homogenization for the multi-scale analysis of multi-phase materials. Dissertation, TU Eindhoven (2002)

  38. Krempaszky, C., Očenášek, J., Espinoza, V., Werner, E., Hebesberger, T., Pichler, A.: Micromechanical modelling of the formability of dual-phase steels. In: Stout, M.R., Chu, E., Mehta, M., Banovic, S.W. (eds.) Proceedings MS &T 2007, Fundamentals and Characterization, pp. 431–444. Association for Iron & Steel and TMS, Warrendale, PA, USA (2007)

  39. Lebensohn R., Bringa E., Caro A.: A viscoplastic micromechanical model for the yield strength of nanocrystalline materials. Acta Mater. 55(1), 261–271 (2007) doi:10.1016/j.actamat.2006.07.023

    Article  Google Scholar 

  40. Liedl U., Traint S., Werner E.: An unexpected feature of the stress–strain diagram of dual-phase steel. Comput. Mater. Sci. 25(1–2), 122–128 (2002) doi:10.1016/S0927-0256(02)00256-2

    Article  Google Scholar 

  41. Mandel, J.: Conditions de Stabilité et Postulat de Drucker. In: Kravtchenko, J., Sirieys, P. (eds.) Rheology and Soil Mechanics / Rhéologie et Mécanique des Sols, International Union of Theoretical and Applied Mechanics, pp. 58–68. Springer Berlin Heidelberg (1966). doi:10.1007/978-3-642-46047-0_5

  42. McLaughlin R.: A study of the differential scheme for composite materials. Int. J. Eng. Sci. 15(4), 237–244 (1977) doi:10.1016/0020-7225(77)90058-1

    Article  MATH  Google Scholar 

  43. Meier F., Schwarz C., Werner E.: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122–131 (2014) doi:10.1016/j.commatsci.2014.03.020

    Article  Google Scholar 

  44. Mori T., Tanaka K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  45. Moulinec H., Suquet P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998) doi:10.1016/S0045-7825(97)00218-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Moulinec H., Suquet P.: Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties. Phys. B Condens. Matter 338(1–4), 58–60 (2003) doi:10.1016/S0921-4526(03)00459-9

    Article  ADS  Google Scholar 

  47. Norris A.: A differential scheme for the effective moduli of composites. Mech. Mater. 4(1), 1–16 (1985) doi:10.1016/0167-6636(85)90002-X

    Article  Google Scholar 

  48. Nygårds M.: Number of grains necessary to homogenize elastic materials with cubic symmetry. Mech. Mater. 35(11), 1049–1057 (2003) doi:10.1016/S0167-6636(02)00325-3

    Article  Google Scholar 

  49. Ostoja-Starzewski M.: Material spatial randomness: From statistical to representative volume element. Probab. Eng. Mech. 21(2), 112–132 (2006) doi:10.1016/j.probengmech.2005.07.007

    Article  Google Scholar 

  50. Ostoja-Starzewski, M., Du, X., Khisaeva, Z., Li, W.: On the size of representative volume element in elastic, plastic, thermoelastic and permeable random microstructures. In: Chandra, T., Tsuzaki, K., Militzer, M., Ravindran, C. (eds.) THERMEC, pp. 201–206. Trans Tech Publications, Ltd., Pfäffikon (2006). doi:10.4028/www.scientific.net/MSF.539-543.201

  51. Petryk H.: Plastic instability: Criteria and computational approaches. Arch. Comput. Methods Eng. 4(2), 111–151 (1997) doi:10.1007/BF03020127

    Article  MathSciNet  Google Scholar 

  52. Pufall, R., Alpern, P., Kanert, W., Pfost, M., Smorodin, T., Stecher, M.: Wire bonding degradation induced by temperature gradients under active cyclic loading. In: 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. EuroSimE. pp. 1–5. IEEE (2009). doi:10.1109/ESIME.2009.4938426

  53. Regener, B., Krempaszky, C., Werner, E., Stockinger, M.: Modelling the micromorphology of heat treated Ti6Al4V forgings by means of spatial tessellations feasible for FEM analyses of microscale residual stresses. Comput. Mater. Sci. 52(1), 77–81 (2012). doi:10.1016/j.commatsci.2011.03.035. Proceedings of the 20th International Workshop on Computational Mechanics of Materials—IWCMM 20

  54. Ren Z.Y., Zheng Q.S.: Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals. Mech. Mater. 36(12), 1217–1229 (2004) doi:10.1016/j.mechmat.2003.11.002

    Article  Google Scholar 

  55. Reuss A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 49–58 (1929)

    Article  ADS  MATH  Google Scholar 

  56. Rice, J.R.: The localization of plastic deformation. In: Koiter, W.T. (ed.) Proceedings of the 14th IUTAM Congress on Theoretical and Applied Mechanics, pp. 207–220. North-Holland Publishing Company, Delft, Niederlande (1976)

  57. Rice J.R., Rudnicki J.W.: A note on some features of the theory of localization of deformation. Int. J. Solids Struct. 16(7), 597–605 (1980) doi:10.1016/0020-7683(80)90019-0

    Article  MathSciNet  MATH  Google Scholar 

  58. Ries M., Krempaszky C., Hadler B., Werner E.: The influence of porosity on the elastoplastic behavior of high performance cast alloys. PAMM 7(1), 2150,005–2150,006 (2007) doi:10.1002/pamm.200700159

    Article  Google Scholar 

  59. Ross S.M.: Stochastic processes, 2nd edn. Wiley series in probability and statistics. Wiley, New York (1996)

    Google Scholar 

  60. Roters, F. (ed.): Crystal plasticity finite element methods: in materials science and engineering. Wiley, Weinheim (2010)

  61. Roters F., Eisenlohr P., Hantcherli L., Tjahjanto D., Bieler T., Raabe D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010) doi:10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

  62. Roters F., Eisenlohr P., Kords C., Tjahjanto D., Diehl M., Raabe D.: DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012) doi:10.1016/j.piutam.2012.03.001

    Article  Google Scholar 

  63. Rudnicki J.W., Rice J.R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23(6), 371–394 (1975) doi:10.1016/0022-5096(75)90001-0

    Article  ADS  Google Scholar 

  64. Shen H., Lei T., Liu J.: Microscopic deformation behaviour of martensitic-ferritic dual-phase steels. Mater. Sci. Technol. 2(1), 28–33 (1986) doi:10.1179/mst.1986.2.1.28

    Article  Google Scholar 

  65. Smorodin, T.: Modellierung von Schädigungsmechanismen in Metallisierungsschichten unter schneller Temperaturwechselbelastung. No. 9 in MEMS Technology and Engineering. Der Andere Verlag (2008)

  66. Smorodin, T., Stecher, M., Glavanovics, M., Wilde, J.: Power-cycling of DMOS-switches triggers thermo-mechanical failure mechanisms. In: Solid State Device Research Conference, 2007. ESSDERC 2007. 37th European, pp. 139–142 (2007). doi:10.1109/ESSDERC.2007.4430898

  67. Smorodin T., Wilde J., Alpern P., Stecher M.: A temperature-gradient-induced failure mechanism in metallization under fast thermal cycling. IEEE Trans. Device Mater. Reliab. 8(3), 590–599 (2008) doi:10.1109/TDMR.2008.2002359

    Article  Google Scholar 

  68. Smorodin, T., Wilde, J., Nelle, P., Lilleodden, E., Stecher, M.: Modeling of DMOS subjected to fast temperature cycle stress and improvement by a novel metallization concept. pp. 689–690. IEEE (2008). doi:10.1109/RELPHY.2008.4558990

  69. Snyder, D., Miller, M.: Translated Poisson-Processes. In: Random Point Processes in Time and Space, Springer Texts in Electrical Engineering, pp. 113–174. Springer, New York (1991). doi:10.1007/978-1-4612-3166-0_3

  70. Stroeven M., Askes H., Sluys L.J.: Numerical determination of representative volumes for granular materials. Comput. Methods Appl. Mech. Eng. 193(30–32), 3221–3238 (2004) doi:10.1016/j.cma.2003.09.023

    Article  ADS  MATH  Google Scholar 

  71. Su Y., Gurland J.: Strain partition, uniform elongation and fracture strain in dual-phase steels. Mater. Sci. Eng. 95(0), 151–165 (1987) doi:10.1016/0025-5416(87)90507-6

    Article  Google Scholar 

  72. Tandon G.P., Weng G.J.: A theory of particle-reinforced plasticity. J. Appl. Mech. 55(1), 126 (1988) doi:10.1115/1.3173618

    Article  ADS  Google Scholar 

  73. Taxer, T.: Finite element simulation of porous nickel-base superalloys on multiple length scales. Dissertation, TU München (2012)

  74. Taxer T., Schwarz C., Smarsly W., Werner E.: A finite element approach to study the influence of cast pores on the mechanical properties of the Ni-base alloy MAR-M247. Mater. Sci. Eng. A 575, 144–151 (2013) doi:10.1016/j.msea.2013.02.067

    Article  Google Scholar 

  75. Terada K., Hori M., Kyoya T., Kikuchi N.: Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37(16), 2285–2311 (2000) doi:10.1016/S0020-7683(98)00341-2

    Article  MATH  Google Scholar 

  76. Terada K., Kikuchi N.: Microstructural design of composites using the homogenization method and digital images. Mater. Sci. Res. Int. 2(2), 65–72 (1996)

    Google Scholar 

  77. Thomas T.Y.: Plastic flow and fracture in solids. J. Math. Mech. 7(3), 291–322 (1958) doi:10.1002/zamm.19620420426

    MathSciNet  MATH  Google Scholar 

  78. Torquato S.: Effective stiffness tensor of composite media : II. applications to isotropic dispersions. J. Mech. Phys. Solids 46(8), 1411–1440 (1998) doi:10.1016/S0022-5096(97)00083-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Torquato S.: Random Heterogeneous Materials Microstructure and Macroscopic Properties, 1st edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  80. Trias D., Costa J., Turon A., Hurtado J.: Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers. Acta Mater. 54(13), 3471–3484 (2006) doi:10.1016/j.actamat.2006.03.042

    Article  Google Scholar 

  81. Vinogradov V., Milton G.W.: An accelerated FFT algorithm for thermoelastic and non-linear composites. Int. J. Numer. Methods Eng. 76(11), 1678–1695 (2008) doi:10.1002/nme.2375

    Article  MathSciNet  MATH  Google Scholar 

  82. Voigt W.: Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wiedemann Annalen 38, 573–587 (1889)

    MATH  Google Scholar 

  83. Voronoï G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallèlloédres primitifs. Journal für Die Reine Und Angewandte Mathematik 134, 198–287 (1908)

    Google Scholar 

  84. Wesenjak, R., Krempaszky, C., Werner, E.: Prediction of forming-limit curves of dual-phase steels based on a multiple length scale modelling approach considering material instabilities. Comput. Mater. Sci. (2015). doi:10.1016/j.commatsci.2015.09.046

  85. Zaoui A.: Continuum micromechanics: Survey. Journal of Engineering Mechanics 128(8), 808–816 (2002) doi:10.1061/(ASCE)0733-9399(2002)128:8(808)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Meier.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, E., Wesenjak, R., Fillafer, A. et al. Microstructure-based modelling of multiphase materials and complex structures. Continuum Mech. Thermodyn. 28, 1325–1346 (2016). https://doi.org/10.1007/s00161-015-0477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0477-7

Keywords

Navigation