Skip to main content
Log in

Accumulation and Distribution Characteristics of Zinc and Cadmium in the Hyperaccumulator Plant Sedum plumbizincicola

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Accumulation and distribution of Zn and Cd in the hyperaccumulator plant Sedum plumbizincicola were investigated in a hydroponic experiment. Mean Cd and Zn concentrations in shoots (7,010 and 18,400 mg kg−1) were about sevenfold and fivefold higher than those in roots (840 and 3,000 mg kg−1) after exposure to 100 μM CdSO4 and 600 μM ZnSO4, respectively. Cd and Zn concentrations in young leaves (4,330 and 9,820 mg kg−1) were about sixfold and twofold higher than those in mature leaves (636 and 2,620 mg kg−1), respectively. MicroPIXE analysis showed that Zn was predominantly localized in epidermal cells in both young and mature leaves, but large amounts of Zn occurred in mesophyll cells in young leaves. Leaf tissue fractionation showed that soluble and cell wall fractions were different at the two stages of leaf growth. Young and mature leaves of S. plumbizincicola also showed different accumulation and distribution characteristics for Zn and Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ager FJ, Ynsa MD, Dominguez-Solis JR, Gotor C, Respaldiza MA, Romero LC (2002) Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nucl Instrum Meth B 189:494–498

    Article  CAS  Google Scholar 

  • Chardonnens AN, ten Bookum WM, Kuijper LDJ, Verkleij JAC, Ernst WHO (1998) Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris. Physiol Plantarum 104:75–80

    Article  CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:756–775

    Article  Google Scholar 

  • Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  • Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Syst Evol 23:675–687

    CAS  Google Scholar 

  • Gabbrielli R, Pandolfini T, Vergnano O, Palandri MR (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122:271–277

    Article  CAS  Google Scholar 

  • Hayens RJ (1980) Ion exchange properties of roots and ionic interactions within the root POPLsn: their role in ion accumu1ation by plants. Bot Rev 46:75–99

    Article  Google Scholar 

  • Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Hu PJ, Yin YG, Ishikawa S, Suzui N, Kawachi N, Fujimaki S, Igura M, Yuan C, Huang JX, Li Z, Makino T, Luo YM, Christie P, Wu LH (2013) Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environ Sci Pollut R 20:6306–6316

    Article  CAS  Google Scholar 

  • Kachenko AG, Singh B, Bhatia NP, Siegele R (2008) Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthus floribundus sub sp floribundus using micro-PIXE spectroscopy. Nucl Instrum Meth B 266:667–676

    Article  CAS  Google Scholar 

  • Koren S, Arčon I, Kump P, Nečemer M, Vogel-Mikuš K (2013) Influence of CdCl2 and CdSO4 supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant Soil 370:125–148

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  Google Scholar 

  • Li TQ, Yang XE, Yang JY, He ZL (2006) Zn Accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere 16:616–623

    Article  CAS  Google Scholar 

  • Li Z, Wu LH, Hu PJ, Luo YM, Christie P (2013) Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola. J Hazard Mater 261:332–341

    Article  CAS  Google Scholar 

  • Lichtenberger O, Neumann D (1997) Analytical electron microscopy as a powerful tool in plant cell biology: Examples using electron energy loss spectroscopy and X-ray microanalysis. Eur J Cell Biol 73:378–386

    CAS  Google Scholar 

  • Lin M, Qiang G, Pei CM, Xiao XT (2013) Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil. B Environ Contam Tox 91:298–301

    Article  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Ramos I, Esteban E, Lucena JJ, Gárate A (2002) Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Sci 162:761–767

    Article  CAS  Google Scholar 

  • Ryan CG, Cousens DR, Sie SH, Griffin WL (1990a) Quantitative analysis of PIXE spectra in geoscience applications. Nucl Instrum Meth B 49:271–276

    Article  Google Scholar 

  • Ryan CG, Cousens DR, Sie SH, Griffin WL, Suter GF, Clayton E (1990b) Quantitative PIXE micro analysis of geological material using the CSIRO proton microprobe. Nucl Instrum Meth B 47:55–71

    Article  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Sridhar BBM, Diehl SV, Han FX, Monts DL, Sub Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141

    Article  Google Scholar 

  • Sun YB, Zhou QX, Wang L, Liu WT (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814

    Article  CAS  Google Scholar 

  • Tian SK, Lu LL, Labavitch J, Yang XE, He ZL, Hu HN, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    Article  CAS  Google Scholar 

  • Vázquez MD, Barceló J, Poschenrieder C (1992) Location of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. Plant Physiol 140:350–355

    Article  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol 92:1086–1093

    Article  Google Scholar 

  • Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Simčič J, Pelicon P, Budnar M (2008) Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721

    Article  Google Scholar 

  • Wang X, Liu YG, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Bot 62:389–395

    Article  CAS  Google Scholar 

  • Weigel HJ, Jäger HJ (1980) Subcellular distribution and chemical form of cadmium in bean. Plant Physiol 65:480–482

    Article  CAS  Google Scholar 

  • Wu LH, Liu YJ, Zhou SB, Guo FG, Bi D, Guo XH, Baker AJM, Smith JAC, Luo YM (2013) Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China. Plant Syst Evol 299:487–498

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (41271326), the Chinese Academy for Environmental Planning, and AINSE awards (AINGRA 08079). We thank Professor AJM Baker (Universities of Melbourne and Brisbane, Australia) for his help in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leina Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Zhang, H., Wang, Y. et al. Accumulation and Distribution Characteristics of Zinc and Cadmium in the Hyperaccumulator Plant Sedum plumbizincicola . Bull Environ Contam Toxicol 93, 171–176 (2014). https://doi.org/10.1007/s00128-014-1284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-014-1284-8

Keywords

Navigation