Skip to main content
Log in

Radiologische Bildgebung der Kniegelenkarthrose

Radiological imaging of osteoarthritis of the knee

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die Arthrose ist die häufigste chronische, altersassoziierte, degenerative Gelenkerkrankung, die zu typischer Knorpeldegradierung und verminderter Gelenkbeweglichkeit führt. Bei 70- bis 74-Jährigen liegt die Prävalenz einer Kniegelenkarthrose bei über 90%. Die demographische Altersentwicklung der westlichen Industrieländer prognostiziert einen deutlichen Anstieg der Arthroseinzidenz für die nächsten Jahrzehnte.

Radiologische Standardverfahren

Nach wie vor stellt die konventionelle projektionsradiographische Röntgenbildanalyse die einfachste und günstigste radiologische Modalität bei der Beurteilung und Verlaufskontrolle der Kniegelenkarthrose dar.

Methodische Innovationen

Das Röntgenbild birgt zunehmend in zahlreichen klinischen und wissenschaftlichen Situationen signifikante Limitierungen, welche durch moderne bildgebende Methoden wie der Magnetresonanztomographie (MRT) und Sonographie überwunden werden können.

Leistungsfähigkeit

Intravitale Knorpelbeurteilungen anhand spezieller bildgebender MRT-Methoden werden zunehmend in der Diagnostik und Verlaufskontrolle der Arthrose eingesetzt und könnten bei breiter klinischer Anwendung zukünftig zu einem Paradigmenwechsel bei der Behandlung arthrotischer Knorpelschäden führen. In diesem Übersichtsartikel sollen die wichtigsten radiologischen diagnostischen Merkmale der Kniegelenkarthrose und deren radiologisch Beurteilung dargestellt werden.

Empfehlung für die Praxis

Die demographische Altersentwicklung der westlichen Industrieländer prognostiziert einen deutlichen Anstieg der Arthroseinzidenz für die nächsten Jahrzehnte. Die systematische radiologische Beurteilung der Kniegelenkarthrose umfasst die Bestimmung der Gelenkkapselstrukturen, Synovia, Knorpeldicke, des Knorpelvolumens, eventueller Knorpeldefekte, des makromodularen Netzwerks des hyalinen Gelenkknorpels, eines Knochenmarködems, der Menisken und der artikulären Gelenkbänder. Moderne bildgebende Methoden wie die MRT und Sonographie sind in der Lage, die Schwächen der Projektionsradiographie zu eliminieren und das Kniegelenk mit seinen knöchernen, knorpeligen, ligamentösen und weichteildichten Strukturen detailliert abzubilden sowie den Schweregrad der Kniearthrose quantitativ zu beurteilen.

Abstract

Clinical/methodical issue

Osteoarthritis is the most common degenerative age-related joint disease leading to typical degradation of articular cartilage with severe pain and limitation of joint motion.

Standard radiological methods

Although knee radiographs are widely considered as the gold standard for the assessment of knee osteoarthritis in clinical and scientific settings they increasingly have significant limitations in situations when resolution and assessment of cartilage is required.

Methodical innovations

Analysis of osteoarthritis of the knee with conventional x-ray is associated with many technical limitations and is increasingly being replaced by high-quality assessment using magnetic resonance imaging (MRI) or sonography both in the clinical routine and scientific studies.

Performance

Novel imaging modalities such as MRI or ultrasound enable in vivo visualization of the quality of the cartilaginous structure and bone as well as all articular and periarticular tissue. Therefore, the limitations of radiographs in assessment of knee osteoarthritis could be overcome by these techniques. This review article aims to provide insights into the most important radiological features of knee osteoarthritis and systematic visualization with different imaging approaches.

Practical recommendations

The demographic development in western industrialized countries predicts an increase of ageing-related osteoarthritis of the knee for the next decades. A systematic radiological evaluation of patients with knee osteoarthritis includes the assessment of the periarticular soft tissue, cartilaginous thickness, cartilage volume, possible cartilage defects, the macromodular network of hyaline cartilage, bone marrow edema, menisci and articular ligaments. Modern imaging modalities, such as MRI and sonography allow the limitations of conventional radiography to be overcome and to visualize the knee structures in great detail to quantitatively assess the severity of knee osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Felson DT, Naimark A, Anderson J et al (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30(8):914–918

    Article  PubMed  CAS  Google Scholar 

  2. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656

    PubMed  Google Scholar 

  3. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502

    Article  PubMed  CAS  Google Scholar 

  4. Wick MC, Klauser AS (2012) Radiological differential diagnosis of rheumatoid arthritis. Radiologe 52(2):116–123

    Article  PubMed  CAS  Google Scholar 

  5. Peloschek PL, Sailer J, Kainberger F et al (2000) Radiological quantification of joint changes. A methodological overview. Radiologe 40(12):1154–1162

    Article  PubMed  CAS  Google Scholar 

  6. Aigner N, Van der Kraan P, Van den Berg W (2007) Osteoarthritis and inflammation: inflammatory changes in osteoarthritis synoviopathy. In: Buckwalter J, Lotz M, Stoltz JF (eds) Osteoarthritis, inflammation and degradation: a continuum. IOS, Amsterdam, pp 219–235

  7. Altman R, Brandt K, Hochberg M et al (1996) Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a work-shop. Osteoarthritis Cartil 4(4):217–243

    Article  CAS  Google Scholar 

  8. Eckstein F, Schnier M, Haubner M et al (1998) Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging. Clin Orthop Relat Res (352):137–148

    Google Scholar 

  9. Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-organ magnetic resonance imaging (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartil 12(3):177–190

    Article  CAS  Google Scholar 

  10. Cicuttini F, Ding C, Wluka A et al (2005) Association of cartilage defects with loss of knee cartilage in healthy, middle-aged adults: a prospective study. Arthritis Rheum 52(7):2033–2039

    Article  PubMed  Google Scholar 

  11. Conaghan PG, Hunter DJ, Maillefert JF et al (2011) Summary and recommendations of the OARSI FDA osteoarthritis assessment of structural change working group. Osteoarthritis Cartil 19(5):606–610

    Article  CAS  Google Scholar 

  12. Burnett S, Hart DJ, Cooper C, Spector TD (1994) A radiographic atlas of osteoarthritis. Springer, Berlin Heidelberg New York

  13. Cicuttini FM, Baker J, Hart DJ, Spector TD (1996) Association of pain with radiological changes in different compartments and views of the knee joint. Osteoarthritis Cartil 4(2):143–147

    Article  CAS  Google Scholar 

  14. Felson DT, Gale DR, Elon Gale M et al (2005) Osteophytes and progression of knee osteoarthritis. Rheumatology (Oxford) 44(1):100–104

    Google Scholar 

  15. Spector TD, Harris PA, Hart DJ et al (1996) Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum 39(6):988–995

    Article  PubMed  CAS  Google Scholar 

  16. Adams JG, McAlindon T, Dimasi M et al (1999) Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin Radiol 54(8):502–506

    Article  PubMed  CAS  Google Scholar 

  17. Bruyere O, Genant H, Kothari M et al (2007) Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthritis Cartil 15(1):98–103

    Article  CAS  Google Scholar 

  18. Ravaud P, Chastang C, Auleley GR et al (1996) Knee joint space width measurement: an experimental study of the influence of radiographic procedure and joint positioning. J Rheumatol 23(10):1749–1755

    PubMed  CAS  Google Scholar 

  19. Vignon E, Piperno A, Le Graverand MP et al (2003) Measurement of radiographic joint space width in the tibiofemoral compartment of the osteoarthritic knee: comparison of standing anteroposterior and Lyon schuss views. Arthritis Rheum 48(2):378–384

    Article  PubMed  Google Scholar 

  20. Raynauld JP, Martel-Pelletier J, Berthiaume MJ et al (2004) Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum 50(2):476–487

    Article  PubMed  Google Scholar 

  21. Trattnig S, Mamisch TC, Pinker K et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18(6):1251–1259

    Article  PubMed  Google Scholar 

  22. Eckstein F, Gavazzeni A, Sittek H et al (1996) Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 36(2):256–265

    Article  PubMed  CAS  Google Scholar 

  23. Waterton JC, Solloway S, Foster JE et al (2000) Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magn Reson Med 43(1):126–132

    Article  PubMed  CAS  Google Scholar 

  24. Peterfy CG, Van Dijke CF, Janzen DL et al (1994) Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 192(2):485–491

    PubMed  CAS  Google Scholar 

  25. Pilch L, Steward C, Gordon D et al (1994) Assessment of cartilage volume in the femorotibial joint with magnetic resonance imaging and 3D computer reconstruction. J Rheumatol 21(12):2307–2321

    PubMed  CAS  Google Scholar 

  26. Burgkart R, Glaser C, Hylik-Dürr A et al (2001) Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum 44(9):2072–2077

    Article  PubMed  CAS  Google Scholar 

  27. Graichen H, Einsenhart-Rothe R von, Vogl T et al (2004) Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analasys of cartilage volume and further morphologic parameters. Arthritis Rheum 50(3):811–816

    Article  PubMed  Google Scholar 

  28. Cicuttini F, Forbes A, Asbeutah A et al (2000) Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res 18(4):580–584

    Article  PubMed  CAS  Google Scholar 

  29. Ding C, Garnero P, Cicuttini F et al (2005) Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartil 13(3):198–205

    Article  Google Scholar 

  30. Boegard TL, Rudling O, Petersson IF, Johnsson K (2001) Magnetic resonance imaging of the knee in chronic knee pain: a 2-year follow-up. Osteoarthritis Cartil 9(5):473–480

    Article  CAS  Google Scholar 

  31. Hjelle K, Solheim E, Strand T et al (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730–734

    Article  PubMed  Google Scholar 

  32. Ding C, Cicuttini F, Scott F et al (2005) Knee structural alterations and BMI: a cross-sectional study. Obes Res 13(2):350–361

    Article  PubMed  Google Scholar 

  33. Welsch GH, Mamisch TH, Hughes T et al (2008) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zona Z2, and T2* mapping of articular cartilage. Invest Radiol 43(9):619–626

    Article  PubMed  Google Scholar 

  34. Zilkens C, Jäger A, Bittersohl B et al (2009) Delayed gadolinium enhanced MRI of cartilage (dGEMRIC): molecular MRI of hip joint cartilage. Orthopade 38(7):591–599

    Article  PubMed  CAS  Google Scholar 

  35. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41

    Article  PubMed  CAS  Google Scholar 

  36. Tiderius CJ, Svensson J, Leander P et al (2004) dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 51(2):286–290

    Article  PubMed  Google Scholar 

  37. Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52(11):3507–3514

    Article  PubMed  CAS  Google Scholar 

  38. Ericsson YB, Tjornstrand J, Tiderius CJ, Dahlberg LE (2009) Relationship between cartilage gylcosaminoglycan content (assessed with dGEMRIC) and OA risk factors in meniscectomized patients. Osteoarthritis Cartil 17(5):559–564

    Article  Google Scholar 

  39. Wang Y, Wluka AE, Davis S, Cicuttini FM (2006) Factors affecting tibial plateau expansion in healthy women over 2.5 years: a longitudinal study. Osteoarthritis Cartil 14(12):1258–1264

    Article  CAS  Google Scholar 

  40. Hayashi D, Guermazi A, Kwoh CK et al (2011) Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3 T MRI: a comparison between intermediate-weighted fat-supressed spin echo and dual echo steady state sequences. BMC Musculoskelet Disord 12:198

    Article  PubMed  Google Scholar 

  41. Hill CL, Seo GS, Gale D et al (2005) Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum 52(3):794–799

    Article  PubMed  Google Scholar 

  42. Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 Tesla: a comparison using dedicated multi-channel coils and optimized 2D and 3D protocols. Eur Radiol [Epub ahead of print]

  43. Bhattacharyya T, Gale D, Dewire P et al (2003) The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J Bone Joint Surg [Am] 85-A(1):4–9

  44. Klauser AS, Moriggl B, Duftner C et al (2006) Sonography of synovial and erosive inflammatory changes. Radiologe 46(5):365–375

    Article  PubMed  CAS  Google Scholar 

  45. Monteforte P, Rovetta G (1999) Sonographic assessment of soft tissue alterations in osteoarthritis of the knee. Int J Tissue React 21(1):19–23

    PubMed  CAS  Google Scholar 

  46. Naredo E, Acebes C, Möller I et al (2009) Ultrasound validity in the measurement of knee cartilage thickness. Ann Rheum Dis 68(8):1322–1327

    Article  PubMed  CAS  Google Scholar 

  47. Qvistgaard E, Kristoffersen H, Terslev L et al (2001) Guidance by ultrasound of intraarticular injections in the knee and hip joints. Osteoarthritis Cartil 9(6):512–517

    Article  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.C. Wick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wick, M., Jaschke, W. & Klauser, A. Radiologische Bildgebung der Kniegelenkarthrose. Radiologe 52, 994–1002 (2012). https://doi.org/10.1007/s00117-012-2365-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-012-2365-5

Schlüsselwörter

Keywords

Navigation