Skip to main content
Log in

Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee (Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5′-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ament SA, Corona M, Pollock HS, Robinson GE (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci USA 105:4226–4231

    Article  PubMed  CAS  Google Scholar 

  • Blanchette B, Feng X, Singh BR (2007) Marine glutathione S-transferases. Mar Biotechnol 23:513–542

    Article  Google Scholar 

  • Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK (2000) Identification, characterization, structure of the Omega class glutathione transferases. J Biol Chem 275:24798–24806

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Clark AG, Shamaan NA (1984) Evidence that DDT-dehydrochlorinase from the housefly is a glutathione S-transferase. Pestic Biochem Physiol 22:249–261

    Article  CAS  Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636

    Article  PubMed  CAS  Google Scholar 

  • Collins AM, Williams V, Evans JD (2004) Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Mol Biol 13:141–146

    Article  PubMed  CAS  Google Scholar 

  • Corona M, Hughes KA, Weaver DB, Robinson GE (2005) Gene expression patterns associated with queen honey bee longevity. Mech Ageing Dev 126:1230–1238

    Article  PubMed  CAS  Google Scholar 

  • Dabrowska P, Freitak D, Vogel H, Heckel DG, Boland W (2009) The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase. Proc Natl Acad Sci USA 106:16304–16309

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H (2003) The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genom 4:35

    Article  Google Scholar 

  • Dutton JR, Johns S, Miller BL (1997) StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J 16:5710–5721

    Article  PubMed  CAS  Google Scholar 

  • Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14:3–8

    Article  PubMed  CAS  Google Scholar 

  • Grant DF, Matsumura F (1989) Glutathione S-transferase 1 and 2 in susceptible and resistant insecticide resistant Aedes aegypti. Pestic Biochem Physiol 33:132–143

    Article  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Ann Rev Entomol 45:371–391

    Article  CAS  Google Scholar 

  • Honeybee Genome Sequence Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  Google Scholar 

  • Hyun M, Lee J, Lee K, May A, Bohr VA, Ahn B (2008) Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans. Nucleic Acids Res 36:1380–1389

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey PL, Capes-Davis A, Dunn JM, Tolhurst O, Seeto G, Hannan AJ, Lin SL (2000) CROC-4: a novel brain specific transcriptional activator of c-foes expressed from proliferation through to maturation of multiple neuronal cell types. Mol Cell Neurosci 16:185–196

    Article  PubMed  CAS  Google Scholar 

  • Kasai S, Komagata O, Okamura Y, Tomita T (2009) Alternative splicing and developmental regulation of glutathione transferases in Culex quinquefasciatus Say. Pestic Biochem Physiol 94:21–29

    Article  CAS  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann Rev Entomol 52:231–253

    Article  Google Scholar 

  • Li HM, Buczkowski G, Mittapalli O, Xie J, Wu J, Westerman R, Schemerhorn BJ, Murdock LL, Pittendrigh BR (2008) Transcriptomic profiles of Drosophila melanogaster third instar larval midgut and responses to oxidative stress. Insect Mol Biol 17:325–339

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE Jr, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38:796–804

    Article  PubMed  CAS  Google Scholar 

  • Low WY, Ng HL, Morton CJ, Parker MW, Batterham P, Robin C (2007) Molecular evolution of glutathione S-transferases in the genus Drosophila. Genetics 177:1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Lumjuan N, Mccarroll L, Prapanthadara LA, Hemingway J, Ranson H (2005) Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol 35:861–871

    Article  PubMed  CAS  Google Scholar 

  • Lumjuan N, Stevenson BJ, Prapanthadara L, Somboon P, Brophy PM, Loftus BJ, Severson DW, Ranson H (2007) The Aedes aegypti glutathione transferase family. Insect Biochem Mol Biol 37:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara L, Somboon P, Lycett G, Ranson H (2011) The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol 41:203–209

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Chang FN (2007) Purification and cloning of a Delta class glutathione S-transferase displaying high peroxidase activity isolated from the German cockroach Blattella germanica. FEBS J 274:1793–1803

    Article  PubMed  CAS  Google Scholar 

  • Marionnet C, Bernerd F, Dumas A, Verrecchia F, Mollier K, Compan D, Bernard B, Lahfa M, Leclaire J, Medaisko C, Mehul B, Seité S, Mauviel A, Dubertret L (2003) Modulation of gene expression induced in human epidermis by environmental stress in vivo. J Invest Dermatol 121:1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20

    Article  PubMed  Google Scholar 

  • Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101:550–560

    Article  PubMed  CAS  Google Scholar 

  • Parkes TL, Hilliker AJ, Phillips JP (1993) Genetic and biochemical analysis of glutathione S-transferases in the oxygen defence system of Drosophila melanogaster. Genome 36:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Parkes TL, Hilliker AJ, Phillips JP (1999) Motorneurons, reactive oxygen, and life span in Drosophila. Neurobiol Aging 20:531–535

    Article  PubMed  CAS  Google Scholar 

  • Pongjaroenkit S, Jirajaroenrat K, Boonchauy C, Chanama U, Leetachewa S, Prapanthadara L, Ketterman AJ (2001) Genomic organization and putative promoters of highly conserved glutathione S-transferases originating by alternative splicing in Anopheles dirus. Insect Biochem Mol Biol 31:75–85

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Collins F, Hemingway J (1998) The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci USA 95:14284–14289

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 359:295–304

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R (2002) Evolution of supergene families associated with insecticide resistance. Science 298:179–181

    Article  PubMed  CAS  Google Scholar 

  • Rival T, Soustelle L, Strambi C, Besson MT, Iche M, Birman S (2004) Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in Drosophila brain. Curr Biol 17:599–605

    Article  Google Scholar 

  • Robinson A, Huttley GA, Booth HS, Board PG (2004) Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third transferase family with homology to prokaryotic 2-hydroxychromene-2-carboxylate isomerases. Biochem J 379:541–552

    Article  PubMed  CAS  Google Scholar 

  • Sawicki R, Singh SP, Mondal AK, Benes H, Zimniak P (2003) Cloning, expression and biochemical characterization of one Epsilon class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem J 370:661–669

    Article  PubMed  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  PubMed  CAS  Google Scholar 

  • Shi YL, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS (2004) Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress. Proc Natl Acad Sci USA 101:5898–5903

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal A, Agarwal S, Orr WC (1995) Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 270:15671–15674

    Article  PubMed  CAS  Google Scholar 

  • Udomsinprasert R, Pongjaroenkit S, Wongsantichon J, Oakley AJ, Prapanthadara L, Wilce MCJ, Ketterman AJ (2005) Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. Biochem J 388:763–771

    Article  PubMed  CAS  Google Scholar 

  • Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J (2002) Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362:329–337

    Article  PubMed  CAS  Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Yan HR, Meng F, Jia HH, Guo XQ, Xu BH (2012) The identification and oxidative stress response of a zeta class glutathione S-transferase (GSTZ1) gene from Apis cerana cerana. J Insect Physiol 58:782–791

    Article  PubMed  CAS  Google Scholar 

  • Yang JL, Wei XM, Xu J, Yang DL, Liu XQ, Yang JM, Fang JH, Hua XK (2012) A sigma-class glutathione S-transferase from Solen grandis that responded to microorganism glycan and organic contaminants. Fish Shellfish Immunol 32:1198–1204

    Article  PubMed  CAS  Google Scholar 

  • Yu QY, Lu C, Li B, Fang SM, Zuo WD, Dai FY, Zhang Z, Xiang ZH (2008) Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1158–1164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the China Agriculture Research System (No. CARS-45), Agro-scientific Research in the Public Interest (No. 200903006), and the National Natural Science Foundation (No. 31172275) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingqi Guo or Baohua Xu.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Standard curves of AccGSTZ1 and AccGSTD. a Standard curve of AccGSTZ1 gene from the amplification of six ten-fold serial dilutions of plasmid fused by AccGSTZ1. b Standard curve of AccGSTD gene from the amplification of six ten-fold serial dilutions of the same plasmid fused by AccGSTD. Correlation coefficient and slope values are indicated. The calculated threshold cycle values were plotted versus the log of each starting quantity. (JPEG 24 kb)

High resolution image (TIFF 3640 kb)

Supplementary Fig. 2

Determination of anti-AccGSTD specificity using immunoblot analysis (a) and ponceau staining (b). Ponceau staining to verify similar amounts of protein was loaded into each lane. Lane M: pre-stained protein molecular weight marker; lane 1: uninduced recombinant AccGSTD protein; lanes 2: induced recombinant AccGSTD protein; lane 3: purified recombinant AccGSTD protein. (JPEG 7 kb)

High resolution image (TIFF 6764 kb)

Supplementary Table 1

Oligonucleotide primers used in this study (DOCX 15 kb)

Supplementary Table 2

PCR amplification conditions in this study (DOCX 14 kb)

Supplementary Table 3

Estimation of copy number of AccGSTD gene in Apis cerana cerana (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Jia, H., Wang, X. et al. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress. Naturwissenschaften 100, 153–163 (2013). https://doi.org/10.1007/s00114-012-1006-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-1006-1

Keywords

Navigation