Skip to main content
Log in

Molekulare Therapie in der Gastroenterologie und Hepatologie

Molecular therapy in gastroenterology and hepatology

  • Schwerpunkt: Molekulare Ziele der Therapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Mittels molekularer Techniken gewonnene Erkenntnisse haben in den letzten Jahren erheblichen Einfluss auf die Behandlung gastrointestinaler und hepatologischer Erkrankungen gewonnen. Die Diagnose bestimmter Erkrankungen wird nicht mehr allein phänotypisch, sondern aufgrund des Genotyps gestellt. Dies betrifft sowohl monogene Erkrankungen als auch die Identifikation von genetischen Risikokonstellationen (z. B. NOD2/CARD15-Mutation bei M. Crohn). Auch für die Therapieplanung bei viralen Erkrankungen wird eine erweiterte molekulare Diagnostik eingesetzt. Die Versuche, die Lebertransplantation in der Behandlung hereditärer Lebererkrankungen durch gezielte genetische Eingriffe (z. B. mittels viraler Vektoren) zu ersetzen, sind noch in der experimentellen Phase, aber die verwendeten Methoden haben bereits wegweisende Verbesserungen erfahren. Mit der molekularen Identifikation neuer Zielstrukturen war die Entwicklung maßgeschneiderter Therapien möglich. Diese finden insbesondere in der Behandlung chronisch entzündlicher Darmerkrankungen und gastrointestinaler Tumorerkrankungen Anwendung.

Abstract

During recent years, molecular techniques have significantly impacted our understanding and therapeutic concepts in gastrointestinal and liver disease. In a number of diseases, diagnostic work-up includes molecular data that supplements the phenotypical evaluation. This includes monogenic diseases as well as the identification of genetic risk factors (e. g. NOD2/CARD15 mutation in Crohn’s disease) and viral disease. Attempts to replace liver transplantation in hereditary liver disease by targeted molecular interventions (e. g. via viral vectors) are still experimental, but the associated techniques have improved considerably. The molecular identification of therapeutic targets was followed by the development of specifically tailored therapeutics. These agents are mainly used in the treatment of chronic inflammatory bowel disease and gastrointestinal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Niederau C (2003) Hereditäre Hämochromatose. Internist 44: 191–205

    CAS  PubMed  Google Scholar 

  2. American Thoracic Society/European Respiratory Society (2003) Standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med 168: 818–900

    PubMed  Google Scholar 

  3. Graziadei IW, Joseph JJ, Wiesner RH, Therneau TM, Batts KP, Porayko MK (1998) Increased risk of chronic liver failure in adults with heterozygous alpha1-antitrypsin deficiency. Hepatology 28: 1058–1063

    CAS  PubMed  Google Scholar 

  4. Burchell B, Hume R (1999) Molecular genetic basis of Gilbert’s syndrome. J Gastroenterol Hepatol 14: 960–966

    CAS  PubMed  Google Scholar 

  5. Vernet G (2004) Molecular diagnostics in virology. J Clin Virol 31: 239–247

    CAS  PubMed  Google Scholar 

  6. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347: 417–429

    CAS  PubMed  Google Scholar 

  7. Hugot JP, Chamaillard M, Zouali H et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411: 599–603

    CAS  PubMed  Google Scholar 

  8. Ogura Y, Bonen DK, Inohara N et al. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411: 603–606

    CAS  PubMed  Google Scholar 

  9. Hampe J, Cuthbert A, Croucher PJ et al. (2001) Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 357: 1925–1928

    CAS  PubMed  Google Scholar 

  10. Girardin SE, Philpott DJ (2004) Mini-review: the role of peptidoglycan recognition in innate immunity. Eur J Immunol 34: 1777–1782

    CAS  PubMed  Google Scholar 

  11. Hampe J, Grebe J, Nikolaus S et al. (2002) Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet 359: 1661–1665

    CAS  PubMed  Google Scholar 

  12. Buning C, Genschel J, Buhner S et al. (2004) Mutations in the NOD2/CARD15 gene in Crohn’s disease are associated with ileocecal resection and are a risk factor for reoperation. Aliment Pharmacol Ther 19: 1073–1078

    CAS  PubMed  Google Scholar 

  13. Weiss B, Shamir R, Bujanover Y et al. (2004) NOD2/CARD15 mutation analysis and genotype-phenotype correlation in Jewish pediatric patients compared with adults with Crohn’s disease. J Pediatr 145: 208–212

    CAS  PubMed  Google Scholar 

  14. Helio T, Halme L, Lappalainen M et al. (2003) CARD15/NOD2 gene variants are associated with familiarly occurring and complicated forms of Crohn’s disease. Gut 52: 558–562

    CAS  PubMed  Google Scholar 

  15. Vermeire S, Louis E, Rutgeerts P et al. (2002) NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology 123: 106–111

    CAS  PubMed  Google Scholar 

  16. Mascheretti S, Hampe J, Croucher PJ et al. (2002) Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics 12: 509–515

    CAS  PubMed  Google Scholar 

  17. Duerr RH, Barmada MM, Zhang L et al. (1998) Linkage and association between inflammatory bowel disease and a locus on chromosome 12. Am J Hum Genet 63: 95–100

    CAS  PubMed  Google Scholar 

  18. Hampe J, Shaw SH, Saiz R et al. (1999) Linkage of inflammatory bowel disease to human chromosome 6p. Am J Hum Genet 65: 1647–1655

    CAS  PubMed  Google Scholar 

  19. Duerr RH, Barmada MM, Zhang L, Pfutzer R, Weeks DE (2000) High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11–12. Am J Hum Genet 66: 1857–1862

    CAS  PubMed  Google Scholar 

  20. Cho JH, Nicolae DL, Ramos R et al. (2000) Linkage and linkage disequilibrium in chromosome band 1p36 in American Chaldeans with inflammatory bowel disease. Hum Mol Genet 9: 1425–1432

    CAS  PubMed  Google Scholar 

  21. Torok HP, Glas J, Tonenchi L, Mussack T, Folwaczny C (2004) Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 112: 85–91

    CAS  PubMed  Google Scholar 

  22. Franchimont D, Vermeire S, El Housni H et al. (2004) Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53: 987–992

    CAS  PubMed  Google Scholar 

  23. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW (2005) Colorectal cancer. Lancet 365: 153–165

    PubMed  Google Scholar 

  24. Mandel JS, Church TR, Bond JH et al. (2000) The effect of fecal occult-blood screening on the incidence of colorectal cancer. N Engl J Med 343: 1603–1607

    CAS  PubMed  Google Scholar 

  25. Vogelstein B, Fearon ER, Hamilton SR et al. (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525–532

    CAS  PubMed  Google Scholar 

  26. Dong SM, Traverso G, Johnson C et al. (2001) Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst 93: 858–865

    CAS  PubMed  Google Scholar 

  27. Traverso G, Shuber A, Levin B et al. (2002) Detection of APC mutations in fecal DNA from patients with colorectal tumors. N Engl J Med 346: 311–320

    CAS  PubMed  Google Scholar 

  28. Brand RE, Ross ME, Shuber AP (2004) Reproducibility of a multitarget stool-based DNA assay for colorectal cancer detection. Am J Gastroenterol 99: 1338–1341

    CAS  PubMed  Google Scholar 

  29. Ahlquist DA, Skoletsky JE, Boynton KA et al. (2000) Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119: 1219–1227

    CAS  PubMed  Google Scholar 

  30. Muller HM, Oberwalder M, Fiegl H et al. (2004) Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 363: 1283–1285

    PubMed  Google Scholar 

  31. Cantz T, Kubicka S, Manns MP, Ott M (2005) Gentherapeutische Behandlungsstrategien für Lebererkrankungen. In: von der Leyen HE, Wendt C, Dieterich HA (Hrsg) Gentherapie und Biotechnologie. Wiss. Verlagsgesellschaft, Stuttgart, S 98–117

  32. Rifai K, Manns MP, Bahr MJ (2004) Lebertransplantation bei metabolischen Lebererkrankungen im Erwachsenenalter. Z Gastroenterol 42: 749–765

    CAS  PubMed  Google Scholar 

  33. Kren BT, Parashar B, Bandyopadhyay P, Chowdhury NR, Chowdhury JR, Steer CJ (1999) Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of crigler-najjar syndrome type I with a chimeric oligonucleotide. Proc Natl Acad Sci U S A 96: 10.349–10.354

    Google Scholar 

  34. Anonymous (2000) Gene therapy — a loss of innocence. Nat Med 6: 1

    PubMed  Google Scholar 

  35. Grossman M, Rader DJ, Muller DW et al. (1995) A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med 1: 1148–1154

    CAS  PubMed  Google Scholar 

  36. Hofmann C, Loser P, Cichon G, Arnold W, Both GW, Strauss M (1999) Ovine adenovirus vectors overcome preexisting humoral immunity against human adenoviruses in vivo. J Virol 73: 6930–6936

    CAS  PubMed  Google Scholar 

  37. Morral N, Parks RJ, Zhou H et al. (1998) High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther 9: 2709–2716

    CAS  PubMed  Google Scholar 

  38. Park F, Ohashi K, Kay MA (2000) Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood 96: 1173–1176

    CAS  PubMed  Google Scholar 

  39. Van den Driessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen ML, Collen D, Chuah MK (1999) Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci U S A 96: 10379–10384

    CAS  PubMed  Google Scholar 

  40. Gonin P, Gaillard C (2004) Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Ther 11 [Suppl 1]: S98–S108

    CAS  PubMed  Google Scholar 

  41. Relph K, Harrington K, Pandha H (2004) Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ 329: 839–842

    PubMed  Google Scholar 

  42. Davis HL, Mancini M, Michel ML, Whalen RG (1996) DNA-mediated immunization to hepatitis B surface antigen: longevity of primary response and effect of boost. Vaccine 14: 910–915

    CAS  PubMed  Google Scholar 

  43. Roy MJ, Wu MS, Barr LJ et al. (2000) Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19: 764–778

    CAS  PubMed  Google Scholar 

  44. Tacket CO, Roy MJ, Widera G, Swain WF, Broome S, Edelman R (1999) Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine 17: 2826–2829

    CAS  PubMed  Google Scholar 

  45. Rottinghaus ST, Poland GA, Jacobson RM, Barr LJ, Roy MJ (2003) Hepatitis B DNA vaccine induces protective antibody responses in human non-responders to conventional vaccination. Vaccine 21: 4604–4608

    CAS  PubMed  Google Scholar 

  46. Mancini-Bourgine M, Fontaine H, Scott-Algara D, Pol S, Brechot C, Michel ML (2004) Induction or expansion of T-cell responses by a hepatitis B DNA vaccine administered to chronic HBV carriers. Hepatology 40: 874–882

    CAS  PubMed  Google Scholar 

  47. Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, Chen YT, Tao MH (1998) Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol 160: 1320–1329

    CAS  PubMed  Google Scholar 

  48. Geissler M, Gesien A, Tokushige K, Wands JR (1997) Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol 158: 1231–1237

    CAS  PubMed  Google Scholar 

  49. von Weizsäcker F, Wieland S, Kock J, Offensperger WB, Offensperger S, Moradpour D, Blum HE (1997) Gene therapy for chronic viral hepatitis: ribozymes, antisense oligonucleotides, and dominant negative mutants. Hepatology 26: 251–255

    PubMed  Google Scholar 

  50. Wands JR, Geissler M, Putlitz JZ et al. (1997) Nucleic acid-based antiviral and gene therapy of chronic hepatitis B infection. J Gastroenterol Hepatol 12: S354–369

    CAS  PubMed  Google Scholar 

  51. Alt M, Renz R, Hofschneider PH, Caselmann WH (1997) Core specific antisense phosphorothioate oligodeoxynucleotides as potent and specific inhibitors of hepatitis C viral translation. Arch Virol 142: 589–599

    CAS  PubMed  Google Scholar 

  52. Wu CH, Wu GY (1998) Targeted inhibition of hepatitis C virus-directed gene expression in human hepatoma cell lines. Gastroenterology 114: 1304–1312

    CAS  PubMed  Google Scholar 

  53. Blum HE (2002) Molecular targets for prevention of hepatocellular carcinoma. Dig Dis 20: 81–90

    PubMed  Google Scholar 

  54. Suriawinata A, Xu R (2004) An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis 24: 77–88

    CAS  Google Scholar 

  55. Xu GW, Sun ZT, Forrester K, Wang XW, Coursen J, Harris CC (1996) Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology 24: 1264–1268

    CAS  PubMed  Google Scholar 

  56. Cao G, Kuriyama S, Du P, Sakamoto T, Kong X, Masui K, Qi Z (1997) Complete regression of established murine hepatocellular carcinoma by in vivo tumor necrosis factor alpha gene transfer. Gastroenterology 112: 501–510

    CAS  PubMed  Google Scholar 

  57. Huang H, Chen SH, Kosai K, Finegold MJ, Woo SL (1996) Gene therapy for hepatocellular carcinoma: long-term remission of primary and metastatic tumors in mice by interleukin-2 gene therapy in vivo. Gene Ther 3: 980–987

    CAS  PubMed  Google Scholar 

  58. Grimm CF, Ortmann D, Mohr L et al. (2000) Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology 119: 1104–1112

    CAS  PubMed  Google Scholar 

  59. Krohne TU, Shankara S, Geissler M, Roberts BL, Wands JR, Blum HE, Mohr L (2001) Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro. Hepatology 34: 511–518

    CAS  PubMed  Google Scholar 

  60. Mohr L, Shankara S, Yoon SK et al. (2000) Gene therapy of hepatocellular carcinoma in vitro and in vivo in nude mice by adenoviral transfer of the Escherichia coli purine nucleoside phosphorylase gene. Hepatology 31: 606–614

    CAS  PubMed  Google Scholar 

  61. Kianmanesh AR, Perrin H, Panis Y, Fabre M, Nagy HJ, Houssin D, Klatzmann D (1997) A „distant“ bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum Gene Ther 8: 1807–1814

    CAS  PubMed  Google Scholar 

  62. Targan SR, Hanauer SB, van Deventer SJ et al. (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 337: 1029–1035

    CAS  PubMed  Google Scholar 

  63. Present DH, Rutgeerts P, Targan S et al. (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340: 1398–1405

    CAS  PubMed  Google Scholar 

  64. Sands BE, Anderson FH, Bernstein CN et al. (2004) Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 350: 876–885

    CAS  PubMed  Google Scholar 

  65. Baert F, Noman M, Vermeire S, Van Assche G, G DH, Carbonez A, Rutgeerts P (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348: 601–608

    CAS  PubMed  Google Scholar 

  66. Hanauer SB (2004) Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: overview of randomized clinical studies. Rev Gastroenterol Disord 4 [Suppl 3]: S18–24

    PubMed  Google Scholar 

  67. Sandborn WJ, Feagan BG, Radford-Smith G, Kovacs A, Enns R, Innes A, Patel J (2004) CDP571, a humanised monoclonal antibody to tumour necrosis factor alpha, for moderate to severe Crohn’s disease: a randomised, double blind, placebo controlled trial. Gut 53: 1485–1493

    CAS  PubMed  Google Scholar 

  68. Winter TA, Wright J, Ghosh S, Jahnsen J, Innes A, Round P (2004) Intravenous CDP870, a PEGylated Fab‘ fragment of a humanized antitumour necrosis factor antibody, in patients with moderate-to-severe Crohn’s disease: an exploratory study. Aliment Pharmacol Ther 20: 1337–1346

    CAS  PubMed  Google Scholar 

  69. Sandborn WJ, Hanauer SB, Katz S et al. (2001) Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121: 1088–1094

    CAS  PubMed  Google Scholar 

  70. Rutgeerts P, Lemmens L, Van Assche G, Noman M, Borghini-Fuhrer I, Goedkoop R (2003) Treatment of active Crohn’s disease with onercept (recombinant human soluble p55 tumour necrosis factor receptor): results of a randomized, open-label, pilot study. Aliment Pharmacol Ther 17: 185–192

    CAS  PubMed  Google Scholar 

  71. Mannon PJ, Fuss IJ, Mayer L et al. (2004) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 351: 2069–2079

    CAS  PubMed  Google Scholar 

  72. Ghosh S, Goldin E, Gordon FH et al. (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348: 24–32

    CAS  PubMed  Google Scholar 

  73. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274

    CAS  PubMed  Google Scholar 

  74. Schreiber S, Fedorak RN, Nielsen OH et al. (2000) Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 119: 1461–1472

    CAS  PubMed  Google Scholar 

  75. Fedorak RN, Gangl A, Elson CO et al. (2000) Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119: 1473–1482

    CAS  PubMed  Google Scholar 

  76. Colombel JF, Rutgeerts P, Malchow H et al. (2001) Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 49: 42–46

    CAS  PubMed  Google Scholar 

  77. Ito H, Takazoe M, Fukuda Y et al. (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126: 989–996

    CAS  PubMed  Google Scholar 

  78. Sandborn WJ (2004) How future tumor necrosis factor antagonists and other compounds will meet the remaining challenges in Crohn’s disease. Rev Gastroenterol Disord 4 [Suppl 3]: S25–33

    Google Scholar 

  79. Mendelsohn J, Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21: 2787–2799

    CAS  PubMed  Google Scholar 

  80. Amador ML, Hidalgo M (2004) Epidermal growth factor receptor as a therapeutic target for the treatment of colorectal cancer. Clin Colorectal Cancer 4: 51–62

    CAS  PubMed  Google Scholar 

  81. Cunningham D, Humblet Y, Siena S et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351: 337–345

    CAS  PubMed  Google Scholar 

  82. Bruns CJ, Harbison MT, Davis DW et al. (2000) Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 6: 1936–1948

    CAS  PubMed  Google Scholar 

  83. Iannitti D, Dipetrillo T, Cruff D et al. (2004) Erlotinib, gemcitabine, paclitaxel and radiation for locally advanced pancreatic cancer: A phase I study. J Clin Oncol 22: 4093

    Google Scholar 

  84. Scappaticci FA (2002) Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 20: 3906–3927

    CAS  PubMed  Google Scholar 

  85. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3: 391–400

    CAS  PubMed  Google Scholar 

  86. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    CAS  PubMed  Google Scholar 

  87. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11–22

    CAS  PubMed  Google Scholar 

  88. Zhu K, Hamilton AD, Sebti SM (2003) Farnesyltransferase inhibitors as anticancer agents: current status. Curr Opin Investig Drugs 4: 1428–1435

    CAS  PubMed  Google Scholar 

  89. Davies H, Bignell GR, Cox C et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949–954

    CAS  PubMed  Google Scholar 

  90. Anonymous (2003) Activity of the Raf kinase inhibitor BAY 43–9006 in patients with advanced solid tumors. Clin Colorectal Cancer 3: 16–18

    PubMed  Google Scholar 

  91. Mansour SJ, Matten WT, Hermann AS et al. (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970

    CAS  PubMed  Google Scholar 

  92. Sebolt-Leopold JS, Dudley DT, Herrera R et al. (1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 5: 810–816

    CAS  PubMed  Google Scholar 

  93. Rinehart J, Adjei AA, Lorusso PM et al. (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22: 4456–4462

    CAS  PubMed  Google Scholar 

  94. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4: 937–947

    CAS  PubMed  Google Scholar 

  95. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296: 1655–1657

    CAS  PubMed  Google Scholar 

  96. Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A 84: 5034–5037

    CAS  PubMed  Google Scholar 

  97. Ali IU, Schriml LM, Dean M (1999) Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 91: 1922–1932

    CAS  PubMed  Google Scholar 

  98. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4: 257–262

    CAS  PubMed  Google Scholar 

  99. Atkins MB, Hidalgo M, Stadler WM et al. (2004) Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 22: 909–918

    CAS  PubMed  Google Scholar 

  100. Senderowicz AM (2003) Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther 2: S84–95

    CAS  PubMed  Google Scholar 

  101. Schwartz GK, Ilson D, Saltz L et al. (2001) Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. J Clin Oncol 19: 1985–1992

    CAS  PubMed  Google Scholar 

  102. Schwartz GK, O’Reilly E, Ilson D et al. (2002) Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 20: 2157–2170

    CAS  PubMed  Google Scholar 

  103. Gewirtz AM, Sokol DL, Ratajczak MZ (1998) Nucleic acid therapeutics: state of the art and future prospects. Blood 92: 712–736

    CAS  PubMed  Google Scholar 

  104. Kalota A, Shetzline SE, Gewirtz AM (2004) Progress in the development of nucleic acid therapeutics for cancer. Cancer Biol Ther 3: 4–12

    CAS  PubMed  Google Scholar 

  105. Cripps MC, Figueredo AT, Oza AM et al. (2002) Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 8: 2188–2192

    CAS  PubMed  Google Scholar 

  106. Alberts SR, Schroeder M, Erlichman C et al. (2004) Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. J Clin Oncol 22: 4944–4950

    CAS  PubMed  Google Scholar 

  107. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4: 349–360

    CAS  PubMed  Google Scholar 

  108. Richardson PG, Barlogie B, Berenson J et al. (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348: 2609–2617

    CAS  PubMed  Google Scholar 

  109. Mackay H, Major P, Townsley C et al. (2004) A phase II trial of the proteosome inhibitor PS-341 in patients with metastatic colorectal cancer (Abstract). J Clin Oncol 22: 3109

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedemeyer, J., Malek, N.P., Manns, M.P. et al. Molekulare Therapie in der Gastroenterologie und Hepatologie. Internist 46, 861–872 (2005). https://doi.org/10.1007/s00108-005-1462-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-005-1462-1

Schlüsselwörter

Keywords

Navigation