Skip to main content

Advertisement

Log in

Quinolone derivatives as antitubercular drugs

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

New chemotherapeutic drugs are the need to improve tuberculosis (TB) control particularly due to the emergence of multidrug-resistant strains and extensively drug-resistant strains of TB. These antitubercular compounds have different chemical moieties in their structure. Quinolones are generally used against many Gram-positive and Gram-negative bacteria. They are also active against atypical mycobacteria. Some quinolones (ciprofloxacin, levofloxacin, etc.) inhibit strains of Mycobacterium tuberculosis at concentrations <2.0 μg/mL. Fluoroquinolones are an important recent addition to the drugs available for TB, especially for strains that are resistant to first-line agents. The present review provides an overview of the drugs that are being used have quinolone moieties in TB treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alangaden GJ, Lerner SA (1997) The clinical use of fluoroquinolones for the treatment of mycobacterial diseases. Clin Infect Dis 25:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Alangaden GJ, Manavathu EK, Vakulenko SB, Zvonok NM, Lerner SA (1995) Characterization of fluoroquinolone-resistant mutant strains of Mycobacterium tuberculosis selected in the laboratory and isolated from patients. Antimicrob Agents Chemother 39:1700–1703

    Article  PubMed  CAS  Google Scholar 

  • Al-Deeb AO, Alafeefy AM (2008) Synthesis of some new 3H-quinazolin-4-one derivatives as potential antitubercular agents. World Appl Sci J 5(1):94–99

    Google Scholar 

  • Alvirez-Freites EJ, Carter JL, Cynamon MH (2002) In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:1022–1025

    Article  PubMed  CAS  Google Scholar 

  • Aubry A, Pan XS, Fisher LM, Jarlier V, Cambau E (2004) Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother 48:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Bagchi MC, Mills D, Basak SC (2007) Quantitative structure–activity relationship (QSAR) studies of quinolone antibacterials against M. fortuitum and M. smegmatis using theoretical molecular descriptors. J Mol Model 13:111–120

    Article  PubMed  CAS  Google Scholar 

  • Barman Balfour JA, Lamb HM (2000) Moxifloxacin. A review of its clinical potential in the management of community-acquired respiratory tract infections. Drugs 59(1):115–139

    Article  Google Scholar 

  • Bertino J Jr, Fish D (2000) The safety profile of the fluoroquinolones. Clin Ther 22(7):798–817

    Article  PubMed  CAS  Google Scholar 

  • Biedenbach DJ, Sutton LD, Jones RN (1995) Antimicrobial activity of CS-940, a new trifluorinated quinolone. Antimicrob Agents Chemother 39(10):2325–2330

    Article  PubMed  CAS  Google Scholar 

  • Bozeman L, Burman W, Metchock B, Welch L, Weiner M (2005) Fluoroquinolone susceptibility among Mycobacterium tuberculosis isolates from the United States and Canada. Clin Infect Dis 40:386–391

    Article  PubMed  CAS  Google Scholar 

  • Brenwald NP, Gill MJ, Wise R (1998) Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 42:2032–2035

    PubMed  CAS  Google Scholar 

  • Burman WJ, Goldberg S, Johnson JL, Muzanye G, Engle M, Mosher AW, Choudhri S, Daley CL, Munsiff SS, Zhao Z et al (2006) Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am J Respir Crit Care Med 174:331–338

    Article  PubMed  CAS  Google Scholar 

  • CDC (2006) Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs—worldwide, 2000–2004. MMWR Morb Mortal Wkly Rep 55:301–305

    Google Scholar 

  • Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163:1009–1021

    Article  PubMed  Google Scholar 

  • Coyle EA, Kaatz GW, Rybak MJ (2001) Activities of newer fluoroquinolones against ciprofloxacin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 45:1654–1659

    Article  PubMed  CAS  Google Scholar 

  • Cynamon MH, Sklaney M (2003) Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis. Antimicrob Agents Chemother 47:2442–2444

    Article  PubMed  CAS  Google Scholar 

  • Daffe M, Brennan PJ, Mcneil M (2007) Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization. J Med Chem 50:2492

    Google Scholar 

  • Daporta MT, Munoz Bellido JL, Guirao GY, Hernandez MS, Garcia-Rodriguez JA (2004) In vitro activity of older and newer fluoroquinolones against efflux-mediated high level ciprofloxacinresistant Streptococcus pneumoniae. Int J Antimicrob Agents 24:185–187

    Article  PubMed  CAS  Google Scholar 

  • Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. JAMA 282:677–686

    Article  PubMed  CAS  Google Scholar 

  • Flamm RK, Vojtko C, Chu DT, Li Q, Beyer J, Hensey D, Ramer N, Clement JJ, Tanaka SK (1995) In vitro evaluation of ABT-719, a novel DNA gyrase inhibitor. Antimicrob Agents Chemother 39:964–970

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL, Chan J (2001) Tuberculosis: latency and reactivation. Infect Immun 69:4195–4201

    Article  PubMed  CAS  Google Scholar 

  • Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899

    Article  PubMed  Google Scholar 

  • Garay SM (2004) Pulmonary tuberculosis. In: Rom WN, Garay SM (eds) Tuberculosis. Lippincott Williams & Wilkins, Philadelphia, pp 345–394

    Google Scholar 

  • Ginsburg AS, Grosset JH, Bishai WR (2003a) Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 3:432–442

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg AS, Hooper N, Parrish N, Dooley KE, Dorman SE, Booth J, Diener-West M, Merz WG, Bishai WR, Sterling TR (2003b) Fluoroquinolone resistance in patients with newly diagnosed tuberculosis. Clin Infect Dis 37:1448–1452

    Article  PubMed  Google Scholar 

  • Ginsburg AS, Sun R, Calamita H, Scott CP, Bishai WR, Grosset JH (2005) Emergence of fluoroquinolone resistance in Mycobacterium tuberculosis during continuously dosed moxifloxacin monotherapy in a mouse model. Antimicrob Agents Chemother 49:3977–3979

    Article  PubMed  CAS  Google Scholar 

  • Glickman SW, Rasiel EB, Hamilton CD, Kubataev A, Schulman KA (2006) Medicine. A portfolio model of drug development for tuberculosis. Science 311:1246–1247

    Article  PubMed  CAS  Google Scholar 

  • Global Alliance for TB Drug Development (2001) Tuberculosis. Scientific blue print for tuberculosis drug development. Tuberculosis (Edinb) 81(Suppl 1):1–52

    Google Scholar 

  • Gomez JE, McKinney JD (2004) M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84:29–44

    Article  Google Scholar 

  • Grosset JH (1992) Treatment of tuberculosis in HIV infection. Tuber Lung Dis 73:378–383

    Article  PubMed  CAS  Google Scholar 

  • Grosset J, Ji B (1998) Experimental chemotherapy of mycobacterial diseases. In: Gangadharam PRJ, Jenkins PA (eds) Mycobacteria, II chemotherapy. Chapman & Hall, New York, pp 51–97

    Google Scholar 

  • Grosset J, Truffot-Pernot C, Lacroix C, Ji B (1992) Antagonism between isoniazid and the combination pyrazinamide–rifampin against tuberculosis infection in mice. Antimicrob Agents Chemother 36:548–551

    Article  PubMed  CAS  Google Scholar 

  • Herbert D, Paramasivan CN, Venkatesan P, Kubendiran G, Prabhakar R, Mitchison DA (1996) Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother 40:2296–2299

    PubMed  CAS  Google Scholar 

  • ID Weekly Highlights (2000) Moxifloxacin: a new antimicrobial agent. Presented at the 40th CAAC Meeting, Toronto, and September 17–20, 2000. Reported by Pireh D, October, 32–33

  • Hirata T, Saito H, Tomioka H, Sato K, Jidoi J, Hosoe K, Hidaka T (1995) In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 39:2295–2303

    Article  PubMed  CAS  Google Scholar 

  • Hong Kong Chest Service/British Medical Research Council (1992) A controlled study of rifabutin and an uncontrolled study of ofloxacin in the retreatment of patients with pulmonary tuberculosis resistant to isoniazid, streptomycin and rifampicin. Tuber Lung Dis 73:59–67

    Article  Google Scholar 

  • Houston AK, Jones RN (1994) Postantibiotic effect of DU-6859a and levofloxacin as compared with ofloxacin. Diagn Microbiol Infect Dis 18(1):57–59

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Coates AR, Mitchison DA (2003) Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:653–657

    Article  PubMed  CAS  Google Scholar 

  • Islam M, Siddiqui AA, Rajesh R (2008) Synthesis, antitubercular, antifungal and antibacterial activities of 6-substituted phenyl-2-(3í-substituted phenyl pyridazin-6í-yl)-2,3,4,5-tetrahydropyridazin-3-one. Acta Pol Pharm 65(3):353–362

    PubMed  CAS  Google Scholar 

  • Jones PB, Parrish NM, Houston TA, Stapon A, Bansal NP, Dick JD, Townsend CA (2000) A new class of antituberculosis agents. J Med Chem 43:3304–3314

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Azeeza S, Malik MS, Shaik AA, Rao MV (2008) Efforts towards the development of new antitubercular agents: potential for thiolactomycin based compounds. J Pharm Pharmaceut Sci 11(2):56s–80s

    CAS  Google Scholar 

  • Kaufmann SH, Cole ST, Mizrahi V, Rubin E, Nathan C (2005) Mycobacterium tuberculosis and the host response. J Exp Med 201:1693–1697

    Article  PubMed  CAS  Google Scholar 

  • Khasnobis S, Escuyer VE, Chatterjee D (2002) Emerging therapeutic targets in tuberculosis: post genomic era. Expert Opin Ther Targ 6:21–40

    Article  CAS  Google Scholar 

  • Klemens SP, DeStefano MS, Cynamon MH (1993) Therapy of multidrug-resistant tuberculosis: lessons from studies with mice. Antimicrob Agents Chemother 37:2344–2347

    Article  PubMed  CAS  Google Scholar 

  • Kocagoz T, Hackbarth CJ, Unsal I, Rosenberg EY, Nikaido H, Chambers HF (1996) Gyrase mutations in laboratory-selected, fluoroquinoloneresistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 40:1768–1774

    PubMed  CAS  Google Scholar 

  • Koga T, Fukuoka T, Doi N, Harasaki T, Inoue H, Hotoda H, Kakuta M, Muramatsu Y, Yamamura N, Hoshi M, Hirota T (2004) Activity of capuramycin analogues against Mycobacterium tuberculosis Mycobacterium avium and Mycobacterium intracellulare in vitro and in vivo. J Antimicrob Chemother 54:755–760

    Article  PubMed  CAS  Google Scholar 

  • Kunin CM, Ellis WY (2000) Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob Agents Chemother 44(4):848–852

    Article  PubMed  CAS  Google Scholar 

  • Lenaerts AJ, Gruppo V, Marietta KS, Johnson CM, Driscoll DK, Tompkins NM, Rose JD, Reynolds RC, Orme IM (2005) Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 49:2294–2301

    Article  PubMed  CAS  Google Scholar 

  • Lewin CS, Howard BM, Smith JT (1991) 4-Quinolone interactions with gyrase subunit B inhibitors. J Med Microbiol 35:358–362

    Article  PubMed  CAS  Google Scholar 

  • Li XZ, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423

    Article  PubMed  CAS  Google Scholar 

  • Manabe YC, Bishai WR (2000) Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat Med 6:1327–1329

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki E, Miyazaki M, Chen JM, Chaisson RE, Bishai WR (1999) Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob Agents Chemother 43:85–89

    Article  PubMed  CAS  Google Scholar 

  • Murugasu-Oei B, Dick T (2000) Bactericidal activity of nitrofurans against growing and dormant Mycobacterium bovis BCG. J Antimicrob Chemother 46:917–919

    Article  PubMed  CAS  Google Scholar 

  • Nikonenko BV, Samala R, Einck L, Nacy CA (2004) Rapid, simple in vivo screen for new drugs active against Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:4550–4555

    Article  PubMed  CAS  Google Scholar 

  • Nuermberger EL, Yoshimatsu T, Tyagi S, O’Brien RJ, Vernon AN, Chaisson RE, Bishai WR, Grosset JH (2004a) Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med 169:421–426

    Article  PubMed  Google Scholar 

  • Nuermberger EL, Yoshimatsu T, Tyagi S, Williams K, Rosenthal I, O’Brien RJ, Vernon AA, Chaisson RE, Bishai WR, Grosset JH (2004b) Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J Respir Crit Care Med 170:1131–1134

    Article  PubMed  Google Scholar 

  • O’Brien RJ, Nunn PP (2001) The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Am J Respir Crit Care Med 163:1055–1058

    PubMed  Google Scholar 

  • Onodera Y, Tanaka M, Sato K (2001) Inhibitory activity of quinolones against DNA gyrase of Mycobacterium tuberculosis. J Antimicrob Chemother 47:447–450

    Article  PubMed  CAS  Google Scholar 

  • Paramasivan CN, Sulochana S, Kubendiran G, Venkatesan P, Mitchison DA (2005) Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:627–631

    Article  PubMed  CAS  Google Scholar 

  • Pasqualoto KFM, Ferreira EI (2001) An approach for the rational design of new antituberculosis agents. Curr Drug Targets 2:427–437

    Article  PubMed  CAS  Google Scholar 

  • Pestova E, Millichap JJ, Noskin GA, Peterson LR (2000) Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. J Antimicrob Chemother 45:583–590

    Article  PubMed  CAS  Google Scholar 

  • Petrella S, Cambau E, Chauffour A, Andries K, Jarlier V, Sougakoff W (2006) Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother 50:2853–2856

    Article  PubMed  CAS  Google Scholar 

  • Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE III (2000) The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182:4889–4898

    Article  PubMed  CAS  Google Scholar 

  • Rattan A, Kalia A, Ahmad N (1998) Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis 4(2):195–209

    Article  PubMed  CAS  Google Scholar 

  • Reynolds RC, Bansal N, Rose J, Friedrich J, Suling WJ, Maddry JA (1999) Ethambutol–sugar hybrids as potential inhibitors of mycobacterial cell-wall biosynthesis. Carbohydr Res 317:164–179

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JC, Ruiz M, Climent A, Royo G (2001) In vitro activity of four fluoroquinolones against Mycobacterium tuberculosis. Int J Antimicrob Agents 17:229–231

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Serrano MJ, Alcala L, Martinez L, Diaz M, Marin M, Gonzalez-Abad MJ, Bouza E (2000) In vitro activities of six fluoroquinolones against 250 clinical isolates of Mycobacterium tuberculosis susceptible or resistant to first-line antituberculosis drugs. Antimicrob Agents Chemother 44:2567–2568

    Article  PubMed  CAS  Google Scholar 

  • Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577

    Article  PubMed  CAS  Google Scholar 

  • Shafii B, Amini M, Akbarzadeh T, Shafiee A (2008) Synthesis and antitubercular activity of N3,N5-diaryl-4-(5-arylisoxazol-3-yl)-1,4-dihydropyridine-3,5-dicarboxamide. J Sci 19(4):323–328

    CAS  Google Scholar 

  • Sirgel FA, Donald PR, Odhiambo J, Githui W, Umapathy KC, Paramasivan CN, Tam CM, Kam KM, Lam CW, Sole KM, Mitchison DA (2000) A multicentre study of the early bactericidal activity of anti-tuberculosis drugs. J Antimicrob Chemother 45:859–870

    Article  PubMed  CAS  Google Scholar 

  • Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Honer zu Bentrup K (2003) Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 278:1735–1743

    Article  PubMed  CAS  Google Scholar 

  • Smith CV, Sharma V, Sacchettini JC (2004) TB drug discovery: addressing issues of persistence and resistance. Tuberculosis 84:45–55

    Article  PubMed  Google Scholar 

  • Snider DE (1994) Tuberculosis: the world situation. History of the disease and efforts to combat it. In: Porter JDH, McAdam KPWJ (eds) Tuberculosis: back to the future. Wiley, New York, pp 14–31

    Google Scholar 

  • Somoskovi A, Parsons LM, Salfinger M (2001) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2:164–168

    Article  PubMed  CAS  Google Scholar 

  • Stahlmann R, Lode H (1999) Toxicity of quinolones. Drugs 58(Suppl 2):37–42

    Article  PubMed  CAS  Google Scholar 

  • Sullivan EA, Kreiswirth BN, Palumbo L, Kapur V, Musser JM, Ebrahimzadeh A, Frieden TR (1995) Emergence of fluoroquinolone-resistant tuberculosis in New York City. Lancet 345:1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Sulochana S, Rahman F, Paramasivan CN (2005) In vitro activity of fluoroquinolones against Mycobacterium tuberculosis. J Chemother 17:169–173

    PubMed  CAS  Google Scholar 

  • Sun Z, Zhang Y (1999) Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuber Lung Dis 79:319–320

    Article  PubMed  CAS  Google Scholar 

  • Temple ME, Nahata MC (1999) Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother 33(11):1202–1210

    Article  Google Scholar 

  • Teodori E, Dei S, Scapecchi S, Gualtieri F (2002) The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Il Farmaco\ 57:385–415

    Article  PubMed  CAS  Google Scholar 

  • Trivedi AR, Siddiqui AB, Shah VH (2008) Design, synthesis, characterization and antitubercular activity of some 2-heterocycle-substituted phenothiazines. ARKIVOC ii:210–217

    Google Scholar 

  • Wayne LG, Sohaskey CD (2001) Non replicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163

    Article  PubMed  CAS  Google Scholar 

  • Weil DEC (1994) Drug supply: meeting a global need. In: McAdam KPWJ, Porter JDH (eds) Tuberculosis: back to the future. Wiley, New York, pp 123–143

    Google Scholar 

  • WHO (2004) Tuberculosis Fact Sheet. http://www.who.int/mediacentre/factsheets/fs104/en/

  • Willmott CJ, Critchlow SE, Eperon IC, Maxwell A (1994) The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol 242:351–363

    Article  PubMed  CAS  Google Scholar 

  • Yew WW, Kwan SY, Ma WK, Lui KS, Suen HC (1990) Ofloxacin therapy of Mycobacterium fortuitum infection: further experience. J Antimicrob Chemother 25:880–881

    Article  PubMed  CAS  Google Scholar 

  • Zhanel GG, Hoban DJ, Schurek K, Karlowsky JA (2004) Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. Int J Antimicrob Agents 24:529–535

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Guru Ram Das (Post Graduate) Institute of Management & Technology, Dehradun, India for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Asif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asif, M., Siddiqui, A.A. & Husain, A. Quinolone derivatives as antitubercular drugs. Med Chem Res 22, 1029–1042 (2013). https://doi.org/10.1007/s00044-012-0101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0101-3

Keywords

Navigation