Skip to main content
Log in

Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We establish inequalities of Ulyanov-type for moduli of smoothness relating the source Lorentz–Zygmund space \(\, L^{p,r}(\log L)^{\alpha -\gamma },\, \gamma >0,\) and the target space \(\, L^{p^*,s}(\log L)^\alpha \) over \(\, {\mathbb R}^n\) if \(\, 1<p<p^*<\infty \) and over \(\, \mathbb {T}^n\) if \(\, 1<p \le p^*<\infty .\) The stronger logarithmic integrability (corresponding to \(\, L^{p^*,s}(\log L)^\alpha \)) is balanced by an additional logarithmic smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Dissertationes Math. (Rozprawy Mat.) 175, 1–72 (1980)

    MathSciNet  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  5. Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–789 (1980)

    Article  MATH  Google Scholar 

  6. Burenkov, V.I.: On the exact constant in the Hardy inequality with \(0<p<1\) for monotone functions. Proc. Steklov Inst. Math. 194(4), 59–63 (1993)

    MathSciNet  Google Scholar 

  7. Butzer, P.L., Dyckhoff, H., Görlich, E., Stens, R.L.: Best trigonometric approximation, fractional order derivatives and Lipschitz classes. Can. J. Math. 29, 781–793 (1977)

    Article  MATH  Google Scholar 

  8. Calderón, A.-P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24(2), 113–190 (1964)

    MATH  Google Scholar 

  9. Dai, F., Ditzian, Z., Tikhonov, S.: Sharp Jackson inequalities. J. Approx. Theory 151, 86–112 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. DeVore, R., Riemenschneider, S., Sharpley, R.: Weak interpolation in Banach spaces. J. Funct. Anal. 33, 58–94 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ditzian, Z.: Some remarks on approximation theorems on various Banach spaces. J. Math. Anal. Appl. 77, 567–576 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ditzian, Z.: Rearrangement invariance and relations among measures of smoothness. Acta Math. Hung. 135, 270–285 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ditzian, Z., Prymak, A.: Nikol’skii inequalities for Lorentz spaces. Rocky Mt. J. Math. 40, 209–223 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ditzian, Z., Tikhonov, S.: Ul’yanov and Nikol’skiĭ-type inequalities. J. Approx. Theory 133, 100–133 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ditzian, Z., Tikhonov, S.: Moduli of smoothness of functions and their derivatives. Stud. Math. 180, 143–160 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Edmunds, D.E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146, 116–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Edmunds, D.E., Triebel, H.: Logarithmic Sobolev spaces and their applications to spectral theory. Proc. Lond. Math. Soc. 71, 333–371 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Evans, W.D., Opic, B.: Real interpolation with logarithmic functors and reiteration. Can. J. Math. 52, 920–960 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gogatishvili, A., Opic, B., Trebels, W.: Limiting reiteration for real interpolation with slowly varying functions. Math. Nachr. 278, 86–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gogatishvili, A., Pick, L., Schneider, J.: Characterization of a rearrangement-invariant hull of a Besov space via interpolation. Rev. Mat. Complut. 25, 267–283 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gol’dman, M.L.: Embedding of constructive and structural Lipschitz spaces in symmetric spaces. Trudy Mat. Inst. Steklov. 173, 90–112 (1986) (Russian) (translated in Proc. Steklov Inst. Math. 173(4), 93–118 (1987))

  22. Hansson, K.: Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45(1), 77–102 (1979)

    MATH  MathSciNet  Google Scholar 

  23. Haroske, D.D., Triebel, H.: Embedding of function spaces: a criterion in terms of differences. Complex Var. Elliptic Equ. 56, 931–944 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–323 (1968)

    MATH  MathSciNet  Google Scholar 

  25. Kolyada, V.I.: Rearrangements of functions and embedding theorems. Russ. Math. Surv. 44(5), 73–117 (1989) (translated from. Uspekhi Mat. Nauk 44(5), 61–95 (1989))

  26. Kolyada, V.I., Lerner, A.K.: On limiting embeddings of Besov spaces. Stud. Math. 171(1), 1–13 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nursultanov, E., Tikhonov, S.: A sharp Remez inequality for trigonometric polynomials. Constr. Approx. 38(1), 101–132 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Opic, B., Pick, L.: On generalized Lorentz–Zygmund spaces. Math. Inequal. Appl. 2, 391–467 (1999)

    MATH  MathSciNet  Google Scholar 

  29. Opic, B., Trebels, W.: Bessel potentials with logarithmic components and Sobolev-type embeddings. Anal. Math. 26, 299–319 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Radoslavova, T.V.: Decrease orders of the \(L^p\)-moduli of continuity (\(0<p<\infty \)). Anal. Math. 5, 219–234 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sherstneva, L.A.: Some embedding theorems for generalized Nikolskii classes in Lorentz spaces (Russian, English summary). Anal. Math. 14, 323–345 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Simonov, B., Tikhonov, S.: Sharp Ul’yanov-type inequalities using fractional smoothness. J. Approx. Theory 162, 1654–1684 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  34. Tikhonov, S.: On modulus of smoothness of fractional order. Real Anal. Exchange 30, 507–518 (2004/2005)

  35. Tikhonov, S.: Weak type inequalities for moduli of smoothness: the case of limit value parameters. J. Fourier Anal. Appl. 16, 590–608 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tikhonov, S., Trebels, W.: Ulyanov-type inequalities and generalized Liouville derivatives. Proc. R. Soc. Edinb. Sect. A 141, 205–224 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tikhonov, S., Zeltser, M.: Weak monotonicity concept and its applications. In: Fourier Analysis, Trends in Mathematics, pp. 357–374 (2014)

  38. Trebels, W.: Some Fourier multiplier criteria and the spherical Bochner–Riesz kernel. Rev. Roum. Math. Pures Appl. 20, 1173–1185 (1975)

    MATH  MathSciNet  Google Scholar 

  39. Trebels, W.: Inequalities for moduli of smoothness versus embeddings of function spaces. Arch. Math. (Basel) 94, 155–164 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Trebels, W., Westphal, U.: K-functionals related to semigroups of operators. Rend. Circ. Mat. Palermo 2(Suppl No. 76), 603–620 (2005)

    MathSciNet  Google Scholar 

  41. Trebels, W., Westphal, U.: On Ulyanov inequalities in Banach spaces and semigroups of linear operators. J. Approx. Theory 160, 154–170 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ul’yanov, P.L.: The imbedding of certain function classes \(H_p^\omega \). Izv. Akad. Nauk SSSR Ser. Mat. 3, 649–686 (1968)

    Google Scholar 

  43. Ul’yanov, P.L.: The imbedding of certain function classes \(H_p^{\omega }\). Math. USSR-Izv. 2(3), 601–637 (1968). (English transl.)

    Article  Google Scholar 

  44. Wainger, S.: Special trigonometric series in k-dimensions. Mem. Am. Math. Soc. 59, 1–102 (1965)

    MathSciNet  Google Scholar 

  45. Wilmes, G.: On Riesz-type inequalities and \(K\)-functionals related to Riesz potentials in \(\mathbb{R}^{N}\). Numer. Funct. Anal. Optim. 1, 57–77 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wilmes, G.: Some inequalities for Riesz potentials of trigonometric polynomials of several variables. Proc. Symp. Pure Math. 35(Part 1), 175–182 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for useful comments and suggestions that led to the improvement of the paper. Part of this work was done while the authors were at the Centre de Recerca Matemàtica (Barcelona) in 2011. This research was partially supported by the MTM 2011-27637, 2014 SGR 289, RFFI 13-01-00043, RVO: 67985840, the Grant Agency of the Czech Republic, Grants Nos. 201/08/0383, and P 201 13-14743S. The research of A. Gogatishvili was partially supported by the research grant no. 31/48 of the Shota Rustaveli National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Tikhonov.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogatishvili, A., Opic, B., Tikhonov, S. et al. Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces . J Fourier Anal Appl 20, 1020–1049 (2014). https://doi.org/10.1007/s00041-014-9343-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9343-4

Keywords

Mathematics Subject Classification

Navigation