Skip to main content
Log in

Precise Electronically Adjustable Oscillator Suitable for Quadrature Signal Generation Employing Active Elements with Current and Voltage Gain Control

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new oscillator suitable for quadrature and multiphase signal generation is introduced in this contribution. A novel active element, called the controlled gain-buffered current and voltage amplifier (CG-BCVA) with electronic possibilities for current and voltage gain adjustment is implemented together with a controlled gain-current follower differential output buffered amplifier (CG-CFDOBA) for linear adjustment of the oscillation frequency and precise control of the oscillation condition in order to ensure a stable level of generated voltages and sufficient total harmonic distortion. The parameters of the oscillator are directly controllable electronically. Simultaneous changes of two current gains allow linear adjusting of the oscillation frequency, and a controllable voltage gain is intended to control the oscillation condition. A detailed comparison of the proposed circuits with recently developed and discovered solutions employing the same type of electronic control is provided and shows the useful features of the proposed oscillator and utilized methods of electronic control. Behavioral models based on commercially available ICs have been used for experimental purposes. CMOS implementation of active elements was introduced and utilized for additional simulations and studies. Non-ideal analysis, Monte Carlo statistical evaluations of simulated models, and further analyses were performed for the exact determination of the expected results. Laboratory experiments confirmed the workability and estimated behavior of the proposed circuit as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. M.T. Abuelmaátti, Grounded capacitor current-mode oscillator using single current follower. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 39(12), 1018–1020 (1992)

    Article  Google Scholar 

  2. AD8138, Low distortion differential ADC driver. Analog Devices [online]. Last modified 1/2006 [cit. 28.7.2011. Available at URL: <http://www.analog.com/static/imported-files/data_sheets/AD8138.pdf>

  3. K.M. Al-Ruwaihi, J.M. Noras, A novel linear resistor utilizing MOS transistors with identical sizes and one controlling voltage. Int. J. Electron. 76(6), 1083–1098 (1994)

    Article  Google Scholar 

  4. H. Alzaher, CMOS digitally programmable quadrature oscillators. Int. J. Circuit Theory Appl. 36(8), 953–966 (2008)

    Article  Google Scholar 

  5. H. Alzaher, N. Tasadduq, O. Al-Ees, F. Al-Ammari, A complementary metal-oxide semiconductor digitally programmable current conveyor. Int. J. Circuit Theory Appl. 41(1), 69–81 (2013)

    Google Scholar 

  6. H. Alzaher, N. Tasadduq, Realizations of CMOS fully differential current followers/amplifiers, in International Symposium ISCAS (IEEE Press, New York, 2009), pp. 1381–1384

    Google Scholar 

  7. A.F. Arbel, L. Goldminz, Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process. 2(3), 243–255 (1992)

    Article  Google Scholar 

  8. J. Bajer, D. Biolek, Digitally controlled quadrature oscillator employing two ZC-CG-CDBAs, in International Conference Electronic Devices and Systems (EDS09 IMPAPS CS) (2009), pp. 298–303

    Google Scholar 

  9. H. Barthelemy, M. Fillaud, S. Bourdel, J. Gaunery, CMOS inverters based positive type second generation current conveyors. Analog Integr. Circuits Signal Process. 50(2), 141–146 (2007)

    Article  Google Scholar 

  10. D.R. Bhaskar, K.K. Abdalla, R. Senani, Electronically-controlled current-mode second order sinusoidal oscillators using MO-OTAs and grounded capacitors. Circuits Syst. 2(2), 65–73 (2011)

    Article  Google Scholar 

  11. D. Biolek, A. Lahiri, W. Jaikla, M. Siripruchyanun, J. Bajer, Realisation of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectron. J. 42(10), 1116–1123 (2011)

    Article  Google Scholar 

  12. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposal. Radioengineering 17(4), 15–32 (2008)

    Google Scholar 

  13. V. Biolkova, J. Bajer, D. Biolek, Four-phase oscillators employing two active elements. Radioengineering 20(1), 334–339 (2011)

    Google Scholar 

  14. BUF634: 250 mA high-speed buffer, Texas Instruments [online]. 1996, last modified 9/2000 [cit. 28.7.2011]. Available at URL: <http://focus.ti.com/lit/ds/symlink/buf634.pdf>

  15. U. Cam, H. Kuntman, C. Acar, On the realization of OTA-C oscillators. Int. J. Electron. 85(3), 313–326 (1998)

    Article  Google Scholar 

  16. EL2082: Current-mode multiplier. Intersil (Elantec) [online]. 1996, last modified 2003 [cit. 28.7.2011]. Available at URL: <http://www.intersil.com/data/fn/fn7152.pdf>

  17. A. El-Adawy, A.M. Soliman, H.O. Elwan, Low voltage digitally controlled CMOS current conveyor. AEÜ, Int. J. Electron. Commun. 56(3), 137–144 (2002)

    Article  Google Scholar 

  18. I. Eldbib, V. Musil, Self-cascoded current controlled CCII based tunable band pass filter, in 18th International Conference Radioelektronika 2008 (IEEE Press, New York, 2008), pp. 1–4

    Chapter  Google Scholar 

  19. A. Fabre, N. Mimeche, Class A/AB second-generation current conveyor with controlled current gain. Electron. Lett. 30(16), 1267–1268 (1994)

    Article  Google Scholar 

  20. A. Fabre, O. Saaid, F. Wiest, C. Boucheron, High frequency applications based on a new current controlled conveyor. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 43(2), 82–91 (1996)

    Article  Google Scholar 

  21. A. Fabre, Third generation current conveyor: a helpful active element. Electron. Lett. 31(5), 338–339 (1995)

    Article  Google Scholar 

  22. J. Galan, R.G. Carvalaj, A. Torralba, F. Munoz, J. Ramirez-Angulo, A low-power low-voltage OTA-C sinusoidal oscillator with large tuning range. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 52(2), 283–291 (2005)

    Article  Google Scholar 

  23. R.L. Geiger, E. Sanchez-Sinencio, Active filter design using operational transconductance amplifier: a tutorial. IEEE Circuits Devices Mag. 1, 20–32 (1985)

    Article  Google Scholar 

  24. S.S. Gupta, D.R. Bhaskar, R. Senani, New voltage controlled oscillators using CFOAs. AEÜ, Int. J. Electron. Commun. 63(3), 209–217 (2009)

    Article  Google Scholar 

  25. S.S. Gupta, R.K. Sharma, D.R. Bhaskar, R. Senani, Sinusoidal oscillators with explicit current output employing current-feedback op-amps. Int. J. Circuit Theory Appl. 38(2), 131–147 (2010)

    MATH  Google Scholar 

  26. S.S. Gupta, R. Senani, New single resistance controlled oscillators employing a reduced number of unity-gain cells. IEICE Electron. Express 1(16), 507–512 (2004)

    Article  Google Scholar 

  27. S.S. Gupta, R. Senani, New single-resistance-controlled oscillator configurations using unity-gain cells. Analog Integr. Circuits Signal Process. 46(2), 111–119 (2006)

    Article  Google Scholar 

  28. S.S. Gupta, R. Senani, State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs. IEE Proc., Circuits Devices Syst. 145(2), 135–138 (1998)

    Article  Google Scholar 

  29. S.S. Gupta, R. Senani, State variable synthesis of single-resistance-controlled grounded capacitor oscillators using only two CFOAs: additional new realizations. IEE Proc., Circuits Devices Syst. 145(6), 415–418 (1998)

    Article  Google Scholar 

  30. F. He, R. Ribas, C. Lahuec, M. Jezequel, Discussion on the general oscillation startup condition and the Barkhausen criterion. Analog Integr. Circuits Signal Process. 59(2), 215–221 (2009)

    Article  Google Scholar 

  31. N. Herencsar, A. Lahiri, K. Vrba, J. Koton, An electronically tunable current-mode quadrature oscillator using PCAs. Int. J. Electron. 99(5), 609–621 (2012)

    Article  Google Scholar 

  32. N. Herencsar, K. Vrba, J. Koton, A. Lahiri, Realizations of single-resistance-controlled quadrature oscillators using a generalized current follower transconductance amplifier and a unity gain voltage-follower. Int. J. Electron. 97(8), 879–906 (2010)

    Article  Google Scholar 

  33. N. Herencsar, S. Minaei, J. Koton, E. Yuce, K. Vrba, New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integr. Circuits Signal Process. 74(1), 141–154 (2013)

    Article  Google Scholar 

  34. J.W. Horng, A sinusoidal oscillator using current-controlled current conveyors. Int. J. Electron. 88(6), 659–664 (2001)

    Article  MathSciNet  Google Scholar 

  35. J.J. Chen, C.C. Chen, H.W. Tsao, S.I. Liu, Current-mode oscillators using single current follower. Electron. Lett. 27(22), 2056–2059 (1991)

    Article  Google Scholar 

  36. W. Jaikla, A. Lahiri, Resistor-less current-mode four-phase quadrature oscillator using CCCDTA and grounded capacitors. AEÜ, Int. J. Electron. Commun. 66(3), 214–218 (2012)

    Article  Google Scholar 

  37. A.U. Keskin, C. Aydin, E. Hancioglu, C. Acar, Quadrature oscillator using current differencing buffered amplifiers (CDBA). Frequenz 60(3), 21–23 (2006)

    Google Scholar 

  38. A.U. Keskin, D. Biolek, Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc., Circuits Devices Syst. 153(3), 214–218 (2006)

    Article  Google Scholar 

  39. M. Kumngern, J. Chanwutium, K. Dejhan, Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integr. Circuits Signal Process. 65(2), 327–334 (2010)

    Article  Google Scholar 

  40. M. Kumngern, S. Junnapiya, A sinusoidal oscillator using translinear current conveyors, in International Conference APPCAS (IEEE Press, New York, 2010), pp. 740–743

    Google Scholar 

  41. H. Kuntman, A. Ozpinar, On the realization of DO-OTA-C oscillators. Microelectron. J. 29(12), 991–997 (1998)

    Article  Google Scholar 

  42. A. Lahiri, Current-mode variable frequency quadrature sinusoidal oscillator using two CCs and four passive components including grounded capacitors. Analog Integr. Circuits Signal Process. 71(2), 303–311 (2012)

    Article  Google Scholar 

  43. A. Lahiri, Explicit-current-output quadrature oscillator using second-generation current conveyor transconductance amplifier. Radioengineering 18(4), 522–526 (2009)

    Google Scholar 

  44. A. Lahiri, M. Gupta, Realizations of grounded negative capacitance using CFOAs. Circuits Syst. Signal Process. 30(1), 134–155 (2011)

    Article  Google Scholar 

  45. A. Lahiri, Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 61(2), 199–203 (2009)

    Article  Google Scholar 

  46. B. Linarez-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, L. Huertas, CMOS OTA-C high frequency sinusoidal oscillators. IEEE J. Solid-State Circuits 26(2), 160–165 (1991)

    Article  Google Scholar 

  47. S.I. Liu, Single-resistance-controlled/voltage-controlled oscillator using current conveyors and grounded capacitors. Electron. Lett. 31(5), 337–338 (1995)

    Article  Google Scholar 

  48. S. Maheshwari, B. Chatuverdi, High output impedance CMQOs using DVCCs and grounded components. Int. J. Circuit Theory Appl. 39(4), 427–435 (2011)

    Article  Google Scholar 

  49. A. Marcellis, G. Ferri, N.C. Guerrini, G. Scotti, V. Stornelli, A. Trifiletti, The VGC-CCII: a novel building block and its application to capacitance multiplication. Analog Integr. Circuits Signal Process. 58(1), 55–59 (2009)

    Article  Google Scholar 

  50. P.A. Martinez, B.M. Monge-Sanz, Single resistance controlled oscillator using unity gain cells. Microelectron. Reliab. 45(1), 191–194 (2005)

    Google Scholar 

  51. P.A. Martinez, J. Sabadell, C. Aldea, Grounded resistor controlled sinusoidal oscillator using CFOAs. Electron. Lett. 33(5), 346–348 (1997)

    Article  Google Scholar 

  52. H. Martinez-Garcia, A. Grau-Saldes, Y. Bolea-Monte, J. Gamiz-Caro, On discussion on Barkhausen and Nyquist stability criteria. Analog Integr. Circuits Signal Process. 70(3), 443–449 (2012)

    Article  Google Scholar 

  53. S. Minaei, O. Cicekoglu, New current-mode integrator and all-pass section without external passive elements and their application to design a dual-mode quadrature oscillator. Frequenz 57(1–2), 19–24 (2003)

    Google Scholar 

  54. S. Minaei, O.K. Sayin, H. Kuntman, A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 53(7), 1448–1457 (2006)

    Article  Google Scholar 

  55. MOSIS parametric test results of TSMC LO EPI SCN018 technology. Available on-line [ftp://ftp.isi.edu/pub/mosis/vendors/tsmc-018/t44e_lo_epi-params.txt]. Cited 24.5.2012

  56. H. Palouda, National Semiconductors—current feedback amplifiers. Appl. Note 597, 1–10 (1989)

    Google Scholar 

  57. N. Pandey, S.K. Paul, Single CDTA-based current mode all-pass filter and its applications. J. Electr. Comput. Eng. (2011). doi:10.1155/2011/897631

    MathSciNet  Google Scholar 

  58. C. Psychalinos, A. Spanidou, Current amplifier based grounded and floating inductance simulators. AEÜ, Int. J. Electron. Commun. 60(2), 168–171 (2006)

    Article  Google Scholar 

  59. A. Rodriguez-Vazquez, B. Linarez-Barranco, L. Huertas, E. Sanchez-Sinencio, On the design of voltage-controlled sinusoidal oscillators using OTA’s. IEEE Trans. Circuits Syst. 37(2), 198–211 (1990)

    Article  Google Scholar 

  60. S.B. Salem, M. Fakhfakh, D.S. Masmoudi, M. Loulou, P. Loumeau, N. Masmoudi, A high performance CMOS CCII and high frequency applications. Analog Integr. Circuits Signal Process. 49(1), 71–78 (2006)

    Article  Google Scholar 

  61. B. Sedighi, M.S. Bakhtiar, Variable gain current mirror for high-speed applications. IEICE Electron. Express 4(8), 277–281 (2007)

    Article  Google Scholar 

  62. R. Senani, Realization of a class of analog signal processing/signal generation circuits: novel configurations using current feedback opamps. Frequenz 52(9–10), 196–206 (1998)

    Google Scholar 

  63. S. Shi-Xiang, Y. Guo-Ping, C. Hua, A new CMOS electronically tunable current conveyor based on translinear circuits, in 7th International Conference ASICON 2007 (IEEE Press, New York, 2007), pp. 569–572

    Chapter  Google Scholar 

  64. V. Singh, Discussion on Barkhausen and Nyquist stability criteria. Analog Integr. Circuits Signal Process. 62(3), 327–332 (2010)

    Article  Google Scholar 

  65. V. Singh, Equivalent forms of dual-OTA RC oscillators with application to grounded-capacitor oscillators. IEE Proc., Circuits Devices Syst. 153(2), 95–99 (2006)

    Article  Google Scholar 

  66. M. Siripruchyanun, C. Chanapromma, P. Silapan, W. Jaikla, BiCMOS current-controlled current feedback amplifier (CC-CFA) and its applications. WSEAS Trans. Electron. 6(5), 203–219 (2008)

    Google Scholar 

  67. K.C. Smith, A. Sedra, A second generation current conveyor and its applications. IEEE Trans. Circuit Theory CT-17(2), 132–134 (1970)

    Google Scholar 

  68. K.C. Smith, A. Sedra, The current conveyor: a new circuit building block. Proc. IEEE 56(3), 1368–1369 (1968)

    Article  Google Scholar 

  69. A.M. Soliman, CMOS balanced output transconductor and applications for analog VLSI. Microelectron. J. 30(1), 29–39 (1999)

    Article  Google Scholar 

  70. A.M. Soliman, Novel oscillators using current and voltage followers. J. Franklin Inst. 335(6), 997–1007 (1998)

    Article  MathSciNet  Google Scholar 

  71. A.M. Soliman, Synthesis of grounded capacitor and grounded resistor oscillators. J. Franklin Inst. 336(4), 735–746 (1999)

    Article  MATH  Google Scholar 

  72. R. Sotner, J. Jerabek, J. Petrzela, T. Dostal, K. Vrba, Electronically tunable simple oscillator based on single-output and multiple output transconductor. IEICE Electron. Express 6(20), 1476–1482 (2009)

    Article  Google Scholar 

  73. R. Sotner, J. Jerabek, N. Herencsar, T. Dostal, K. Vrba, Electronically adjustable modification of CFA: double current controlled CFA (DCC-CFA), in 35th International Conference on Telecommunications and Signal Processing (TSP 2012) (IEEE Press, New York, 2012), pp. 401–405

    Chapter  Google Scholar 

  74. R. Sotner, J. Jerabek, N. Herencsar, Z. Hrubos, T. Dostal, K. Vrba, Study of adjustable gains for control of oscillation frequency and oscillation condition in 3R-2C oscillator. Radioengineering 21(1), 392–402 (2012)

    Google Scholar 

  75. R. Sotner, J. Jerabek, R. Prokop, K. Vrba, Current gain controlled CCTA and its application in quadrature oscillator and direct frequency modulator. Radioengineering 20(1), 317–326 (2011)

    Google Scholar 

  76. R. Sotner, N. Herencsar, J. Jerabek, J. Koton, T. Dostal, K. Vrba, Quadrature oscillator based on modified double current controlled current feedback amplifier, in 22nd International Conference Radioelektronika 2012 (IEEE Press, New York, 2012), pp. 275–278

    Google Scholar 

  77. R. Sotner, Z. Hrubos, B. Sevcik, J. Slezak, J. Petrzela, T. Dostal, An example of easy synthesis of active filter and oscillator using signal flow graph modification and controllable current conveyors. J. Electr. Eng. 62(5), 258–266 (2011)

    Google Scholar 

  78. G. Souliotis, C. Psychalinos, Electronically controlled multiphase sinusoidal oscillators using current amplifiers. Int. J. Circuit Theory Appl. 37(1), 43–52 (2009)

    Article  Google Scholar 

  79. G. Souliotis, C. Psychalinos, Harmonic oscillators realized using current amplifiers and grounded capacitors. Int. J. Circuit Theory Appl. 35(2), 165–173 (2007)

    Article  Google Scholar 

  80. W. Surakampontorn, K. Kumwachara, CMOS-based electronically tunable current conveyor. Electron. Lett. 28(14), 1316–1317 (1992)

    Article  Google Scholar 

  81. W. Surakampontorn, W. Thitimajshima, Integrable electronically tunable current conveyors. IEE Proc. G, Electron. Circuits Syst. 135(2), 71–77 (1988)

    Article  Google Scholar 

  82. J.A. Svoboda, L. McGory, S. Webb, Applications of commercially available current conveyor. Int. J. Electron. 70(1), 159–164 (1991)

    Article  Google Scholar 

  83. W. Tangsrirat, Electronically tunable multi-terminal floating nullor and its application. Radioengineering 17(4), 3–7 (2008)

    Google Scholar 

  84. W. Tangsrirat, T. Pukkalanun, Digitally programmable current follower and its applications. AEÜ, Int. J. Electron. Commun. 63(5), 416–422 (2009)

    Article  Google Scholar 

  85. Y. Tao, J.K. Fidler, Electronically tunable dual-OTA second-order sinusoidal oscillators/filters with non-interacting controls: a systematic synthesis approach. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(2), 117–129 (2000)

    Article  Google Scholar 

  86. VCA810, High gain adjust range, wideband, variable gain amplifier. Texas Instruments [online]. 2003, last modified 12/2010 [cit. 28.7.2011]. Available at URL: http://focus.ti.com/lit/ds/sbos275f/sbos275f.pdf>

  87. Z. Wang, 2-MOSFET transresistor with extremely low distortion for output reaching supply voltage. Electron. Lett. 26(13), 951–952 (1990)

    Article  Google Scholar 

  88. L. Wangenheim, On the Barkhausen and Nyquist stability criteria. Analog Integr. Circuits Signal Process. 66(1), 139–141 (2011)

    Article  Google Scholar 

  89. A. Yesil, F. Kacar, H. Kuntman, New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering 20(3), 632–637 (2011)

    Google Scholar 

  90. E. Yuce, S. Minaei, H. Alpaslan, Novel CMOS technology-based linear grounded voltage controlled resistor. J. Circuits Syst. Comput. 20(3), 447–455 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper was supported by Czech Science Foundation projects under No. 102/09/1681 and No. 102/11/P489, by the project (Brno University of Technology) of specific research FEKT-S-11-15 and the project Electronic-biomedical co-operation ELBIC M00176. Dr. Herencsar was supported by the project CZ.1.07/2.3.00/30.0039 of the Brno University of Technology. The support of the project CZ.1.07/2.3.00/20.0007 WICOMT, financed by the operational program Education for Competitiveness is gratefully acknowledged. The described research was performed in laboratories supported by the SIX project, registration number CZ.1.05/2.1.00/03.0072, the operational program Research and Development for Innovation. This research work is also funded by projects EU ECOP EE.2.3.20.0094 and CZ.1.07/2.2.00/28.0062.

The authors also wish to thank the anonymous reviewers for their useful and constructive comments which have helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Sotner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotner, R., Hrubos, Z., Herencsar, N. et al. Precise Electronically Adjustable Oscillator Suitable for Quadrature Signal Generation Employing Active Elements with Current and Voltage Gain Control. Circuits Syst Signal Process 33, 1–35 (2014). https://doi.org/10.1007/s00034-013-9623-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9623-2

Keywords

Navigation