Skip to main content
Log in

Mathematical Modeling of Czochralski Type Growth Processes for Semiconductor Bulk Single Crystals

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the mathematical modeling and simulation of crystal growth processes by the so-called Czochralski method and related methods, which are important industrial processes to grow large bulk single crystals of semiconductor materials such as, e. g., silicon (Si) or gallium arsenide (GaAs) from the melt. In particular, we investigate a recently developed technology in which traveling magnetic fields are applied in order to control the behavior of the turbulent melt flow. Since numerous different physical effects like electromagnetic fields, turbulent melt flows, high temperatures, heat transfer via radiation, etc., play an important role in the process, the corresponding mathematical model leads to an extremely difficult system of initial-boundary value problems for nonlinearly coupled partial differential equations. In this paper, we describe a mathematical model that is under use for the simulation of real-life growth scenarios, and we give an overview of mathematical results and numerical simulations that have been obtained for it in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bossavit A.: Electromagnétisme en vue de la Modélisation. Springer, Berlin-Heidelberg- New York (2004)

    Google Scholar 

  2. E. Bänsch. Simulation of instationary, incompressible flows, Acta Mathematica Universitatis Comenianae, vol. LXVII (1998), pp. 101 –114.

  3. S. Clain, J. Rappaz, and M. Swierkosz, Coupling between nonlinear Maxwell and heat equations for an induction heating problem: Modeling and numerical methods, Krizek, M. (ed.) et al., Finite element methods. 50 years of the Courant element. Conference held at the Univ. of Jyvaeskylae, Finland, 1993. New York, NY: Marcel Dekker, Inc. Lect. Notes Pure Appl. Math. 164, 163-171 (1994).

  4. Druet P.-É.: Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in L p. Math. Meth. Appl. Sci. 32, 135–166 (2008)

    Article  MathSciNet  Google Scholar 

  5. P.-É. Druet, Existence of weak solutions to the time-dependent MHD equations coupled to the heat equation with nonlocal radiation boundary conditions, Nonlin. Anal. RWA 10 (2009), 2914–2936.

    Google Scholar 

  6. P.-É. Druet, Analysis of a coupled system of partial differential equations modeling the interaction between melt flow, global heat transfer and applied magnetic fields in crystal growth, PhD Thesis, Humboldt-Universität zu Berlin, 2009.

  7. Druet P.-É.: Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects. Cz. Math. J. 59, 791–825 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. P.-É. Druet, Weak solutions to a model for crystal growth from the melt in changing magnetic fields, in: (K. Kunisch, G. Leugering, J. Sprekels and F. Tröltzsch, eds.), ”Optimal Control of Coupled Systems of PDE”, International Series of Numerical Mathematics 158 (2009), Basel, Birkhäuser, 123–137.

  9. P.-É. Druet, Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side, Appl. of Math. 55 (2010), 111–149.

    Google Scholar 

  10. P.-É. Druet, O. Klein, J. Sprekels, F. Tröltzsch, and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim. 49 (2011), 1707–1736.

    Google Scholar 

  11. Druet P.-É., Philip P.: Noncompactness of integral operators modeling diffuse-gray radiation in polyhedral and transient settings, Integr. Equ. Oper. Theory 69, 101–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Frank-Rotsch, et al. Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen (Device and method for producing crystals from electroconductive melt), July, 17th, 2009, Patentschrift (patent specification) of granted german patent 10 2007 028 548, German Patent and Trade Mark Office, December, 21st, 2011, patent specification of granted european patent EP 2 162 571 B1, European Patent Office.

  13. J. Fuhrmann, T. Koprucki, and H. Langmach, pdelib: An open modular toolbox for the numerical solution of partial differential equations. design patterns, In W. Hackbusch and G. Wittum, Editors, Proceedings of the 14th GAMM Seminar on Concepts of Numerical Software (University of Kiel, 2001), pp. 121 – 132.

  14. O. Klein, P. Philip, and J. Sprekels, Modelling and simulation of sublimation growth in SiC bulk single crystals, Interfaces Free Bound. 6 (2004), 295–314.

  15. O. Klein, Ch. Lechner, P.-É. Druet, P. Philip, J. Sprekels, Ch. Frank-Rotsch, F. M. Kiesling, W. Miller, U. Rehse, and P. Rudolph, Numerical simulation of Czochralski crystal growth under the influence of a traveling magnetic field generated by an internal heater-magnet module (HMM), J. Crystal Growth 310 (2008), 1523–1532.

  16. O. Klein, C. Lechner, P.-É. Druet, P. Philip, J. Sprekels, C. Frank-Rotsch, F.-M. Kießling, W. Miller, U. Rehse, P. Rudolph, Numerical simulations of the influence of a traveling magnetic field, generated by an internal heater-magnet module, on liquid encapsulated Czochralski crystal growth, Magnetohydrodynamics 45 (2009), 557–567.

  17. O. Klein, P. Philip, Correct voltage distribution for axisymmetric sinusoidal modeling of induction heating with prescribed current, voltage, or power, IEEE Transactions on Magnetics 38 (2002), 1519–1523.

    Google Scholar 

  18. Klein O., Philip P.: Transient conductive-radiative heat transfer: Discrete existence and uniqueness for a finite volume scheme, Math. Models Methods Appl. Sci. 15, 227–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Laitinen, T. Tiihonen, Conductive-radiative heat transfer in grey materials, Quart. Appl. Math. 59 (2001), 737–768.

  20. C. Lechner, O. Klein, P.-É. Druet, Development of a software for the numerical simulation of VCz growth under the influence of a traveling magnetic field, J. Crystal Growth 303 (2007), 161–164.

    Google Scholar 

  21. C. Meyer, P. Philip, and F. Tröltzsch, Optimal control of a semilinear PDE with nonlocal radiation interface conditions, SIAM J. Control Optim. 45 (2006), 699–721.

  22. C. Meyer and I. Yousept, Regularization of state-constrained optimal control of semilinear elliptic equations with nonlocal radiation interface conditions, SIAM J. Control Optim. 48 (2009), 734–755.

    Google Scholar 

  23. J. Rappaz and M. Swierkosz, Modelling in numerical simulation of electromagnetic heating, Modelling and optimization of distributed parameter systems (Warsaw, 1995), Chapman & Hall, New York, 1996, 313–320,

  24. Rudolph P.: Travelling magnetic fields applied to bulk crystal growth from the melt:The step from basic research to industrial scale, J. Crystal Growth 310, 1298–1306 (2008)

    Article  Google Scholar 

  25. P. Rudolph, Ch. Frank-Rotsch, F.-M. Kiessling, W. Miller, U. Rehse, O. Klein, Ch. Lechner, J. Sprekels, B. Nacke, H. Kasjanov, P. Lange, M. Ziem, B. Lux, M. Czupalla, O. Root, V. Trautmann, G. Bethin, Crystal growth in heater-magnet modules – From concept to use, in: (E. Braake, B. Nacke, eds.), ”Proceedings of the International Scientific Colloquium Modelling for Electromagnetic Processing (MEP2008), Hannover, October 26-29, 2008”, Leibniz University of Hannover (2008), 26–29.

  26. O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with pardiso. Journal of Future Generation Computer Systems 20 (2004), no. 3, pp. 475–487.

  27. J. Shewchuk. Triangle: Engineering a 2d quality mesh generator and delaunay triangulator. In First Workshop on Applied Computational Geometry (Philadelphia, Pennsylvania) (ACM, 1996), pp. 124–133.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dreyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreyer, W., Druet, P.É., Klein, O. et al. Mathematical Modeling of Czochralski Type Growth Processes for Semiconductor Bulk Single Crystals. Milan J. Math. 80, 311–332 (2012). https://doi.org/10.1007/s00032-012-0184-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-012-0184-9

Mathematics Subject Classification (2010)

Keywords

Navigation