Skip to main content
Log in

The monotone wrapped Fukaya category and the open-closed string map

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We build the wrapped Fukaya category \({\mathcal {W}}(E)\) for any monotone symplectic manifold E, convex at infinity. We define the open-closed and closed-open string maps, \({\mathrm {OC}}:{\mathrm {HH}}_*({\mathcal {W}}(E))\rightarrow { SH }^*(E)\) and \({\mathrm {CO}}: { SH }^*(E)\rightarrow {\mathrm {HH}}^*({\mathcal {W}}(E))\). We study their algebraic properties and prove that the string maps are compatible with the \(c_1({ TE })\)-eigenvalue splitting of \({\mathcal {W}}(E)\). We extend Abouzaid’s generation criterion from the exact to the monotone setting. We construct an acceleration functor \({\mathcal {AF}}: {\mathcal {F}}(E)\rightarrow {\mathcal {W}}(E)\) from the compact Fukaya category which on Hochschild (co)homology commutes with the string maps and the canonical map \(c^*:{ QH }^*(E)\rightarrow { SH }^*(E)\). We define the \({ SH }^*(E)\)-module structure on the Hochschild (co)homology of \({\mathcal {W}}(E)\) which is compatible with the string maps (this was proved independently for exact convex symplectic manifolds by Ganatra). The module and unital algebra structures, and the generation criterion, also hold for the compact Fukaya category \({\mathcal {F}}(E)\), and also hold for closed monotone symplectic manifolds. As an application, we show that the wrapped category of \({\mathcal {O}}(-k) \rightarrow \mathbb {C}\mathbb {P}^m\) is proper (cohomologically finite) for \(1\le k \le m\). For any monotone negative line bundle E over a closed monotone toric manifold B, we show that \({ SH }^*(E)\ne 0\), \({\mathcal {W}}(E)\) is non-trivial and E contains a non-displaceable monotone Lagrangian torus \({\mathcal {L}}\) on which \({\mathrm {OC}}\) is non-zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We are implicitly using canonical identifications of type \({ CF }^*(\varphi _{H_j}(L),L)\equiv { CF }^*(\varphi _{H+H_j}(L),\varphi _{H}(L))\).

  2. Meaning the underlying cohomology level functor is an equivalence. For example, a quasi-isomorphism.

  3. The Maslov index \( \mu _L: H_2(E,L)\rightarrow \mathbb {Z}\) defines a class \(\mu _L\in H^2(E,L)\), and \(\mu _L\mapsto 2c_1({ TE })\) via \(H^2(E,L)\rightarrow H^2(E)\). The Maslov index of a disc bounding L equals the homological intersection number with \({\mathrm {PD}}[\mu _L]\).

  4. By \(\partial _{{\mathbf {q}}_R}\)-equivariance, the \(({\mathbf {q}}^0,{\mathbf {q}}^0)\)-output of \({\mathrm {OC}}({\mathbf {q}}_L{\mathbf {q}}_R\underline{x}',{\mathbf {q}}x_5,x_4,x_3,{\mathbf {q}}x_2,x_1)\) contributes to the \({\mathbf {q}}^1\)-coefficient of \({\mathrm {OC}}({\mathbf {q}}_L{\mathbf {q}}_R\underline{x}',{\mathbf {q}}x_5,{\mathbf {q}}x_4,x_3,{\mathbf {q}}x_2,x_1)\). Compare the Remarks in 3.11 and 3.15.

  5. By \(\partial _{{\mathbf {q}}_L}\)-equivariance, the \(({\mathbf {q}}^0,{\mathbf {q}}^0)\)-output of \(\Delta ^{2|1}(x_2,x_1,{\mathbf {q}}_L{\mathbf {q}}_R\underline{x}',{\mathbf {q}}x_5)\) contributes to the \(({\mathbf {q}}^1,{\mathbf {q}}^0)\)-coefficient of \(\Delta ^{2|1}({\mathbf {q}}x_2,x_1,{\mathbf {q}}_L{\mathbf {q}}_R\underline{x}',{\mathbf {q}}x_5)\). Compare the Remarks in 3.11 and 3.15.

  6. This is the full \({ SH }^*(E)\) for toric negative line bundles, since toric varieties are simply connected.

  7. Remark We already know a priori that (z(y), w(y)) lies at the barycentre of \(\Delta _E\) by (12.5) (for \(X=E\)), but one can also check by hand that \({\mathrm {val}}_t(z(y)) = \tfrac{\lambda _B}{\lambda _E}\, a\) and \({\mathrm {val}}_t(w(y)) = \tfrac{1}{\lambda _E}\) (confirming (12.8) and (12.5)) and in particular \({\mathrm {val}}_t(z,w)>0\) in each entry, so \((z,w)\in {\mathrm {Int}}(\Delta _E)\).

References

  1. Abbondandolo, A., Schwarz, M.: Floer homology of cotangent bundles and the loop product. Geom. Topol. 14(3), 1569–1722 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abouzaid, M.: A geometric criterion for generating the Fukaya category. Publ. Math. Inst. Hautes Études Sci. 112, 191–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abouzaid, M.: A cotangent fibre generates the Fukaya category. Adv. Math. 228(2), 894–939 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abouzaid, M.: On the wrapped Fukaya category and based loops. J. Symplectic Geom. 10(1), 27–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abouzaid, M.: Nearby Lagrangians with vanishing Maslov class are homotopy equivalent. Invent. Math. 189(2), 251–313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abouzaid, M., Auroux, D., Efimov, A.I., Katzarkov, L., Orlov, D.: Homological mirror symmetry for punctured spheres. J. Am. Math. Soc. 26(4), 1051–1083 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abouzaid, M., Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Quantum cohomology and split generation in Lagrangian Floer theory (in preparation)

  8. Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14(2), 627–718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abouzaid, M., Smith, I.: Exact Lagrangians in plumbings. Geom. Funct. Anal. 22(4), 785–831 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Albers, P.: A Lagrangian Piunikhin–Salamon–Schwarz morphism and two comparison homomorphisms in Floer homology. Int. Math. Res. Not. IMRN 2008, no. 4 (2008)

  11. Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT 1, 51–91 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Bourgeois, F., Ekholm, T., Eliashberg, Y.: Effect of Legendrian Surgery. Geom. Topol. 16(1), 301–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biran, P., Cornea, O.: Rigidity and uniruling for Lagrangian submanifolds. Geom. Topol. 13(5), 2881–2989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bridgeland, T.: \(T\)-structures on some local Calabi–Yau varieties. J. Algebra 289, 453–483 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cho, C.-H., Oh, Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10(4), 773–814 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cieliebak, K., Floer, A., Hofer, H., Wysocki, K.: Applications of symplectic homology II: stability of the action spectrum. Math. Z. 223, 27–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fukaya, K.: Galois symmetry on Floer cohomology. Turk. J. Math. 27(1), 11–32 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction. AMS/IP Studies in Advanced Mathematics, vol. 46. AMS, Providence (2009)

  19. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds I. Duke Math. J. 151(1), 23–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukaya, K., Seidel, P., Smith, I.: The symplectic geometry of cotangent bundles from a categorical viewpoint. In: Homological Mirror Symmetry: New Developments and Perspectives. Lecture Notes in Physics, vol. 757, pp. 1–26. Springer, Berlin (2009)

  21. Galkin, S.: The Conifold Point. arXiv:1404.7388v1 (2014)

  22. Ganatra, S.: Symplectic Cohomology and Duality for the Wrapped Fukaya Category. Ph.D. thesis, Massachusetts Institute of Technology. arXiv:1304.7312 (2012)

  23. Getzler, E.: Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology. Israel Math. Conf. Proc. 7, 65–78 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Griffiths, P., Morgan, J.: Rational Homotopy Theory and Differential Forms, Progress in Mathematics, vol. 16, 2nd edn. Birkhäuser, Boston (2013)

    Book  MATH  Google Scholar 

  25. Lazzarini, L.: Existence of a somewhere injective pseudo-holomorphic disc. Geom. Funct. Anal. (GAFA) 10, 829–862 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maydanskiy, M., Seidel, P.: Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres. J. Topol. 3(1), 157–180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oh, Y.-G.: Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I. Commun. Pure Appl. Math. 46(7), 949–993 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oh, Y.-G.: Addendum to [30]. Commun. Pure Appl. Math. 48(11), 1299–1302 (1995)

    Article  MATH  Google Scholar 

  29. Piunikhin, S., Salamon, D., Schwarz, M.: Symplectic Floer–Donaldson Theory and Quantum Cohomology. Contact and Symplectic Geometry (Cambridge, 1994), vol. 8, pp. 171–200, Publ. Newton Inst., CUP, Cambridge (1996)

  30. Ritter, A.F.: Deformations of symplectic cohomology and exact Lagrangians in ALE spaces. Geom. Funct. Anal. 20(3), 779–816 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ritter, A.F.: Topological quantum field theory structure on symplectic cohomology. J. Topol. 6(2), 391–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ritter, A.F.: Floer theory for negative line bundles via Gromov–Witten invariants. Adv. Math. 262, 1035–1106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ritter, A.F.: Circle-actions, quantum cohomology, and the Fukaya category of Fano toric varieties. Geom. Topol. arXiv:1406.7174 (2014) (to appear)

  34. Ritter, A.F., Smith, I.: The wrapped Fukaya category of a negative line bundle. arXiv:1201.5880v1 (2012)

  35. Salamon, D.: Lectures on Floer Homology. Symplectic Geometry and Topology (Park City, UT, 1997), 143–229, IAS/Park City Math. Ser., 7, Amer. Math. Soc., Providence, RI, (1999)

  36. Seidel, P.: Fukaya categories and deformations. Proc. ICM (Beijing) II, 351–360 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Seidel, P.: \(A_{\infty }\) subalgebras and natural transformations. Homology, Homotopy Appl. 10(2), 83–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Seidel, P.: Fukaya categories and Picard–Lefschetz theory. In: Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS) (2008)

  39. Seidel, P.: A Biased View of Symplectic Cohomology, Current Developments in Mathematics, 2006, 211–253. Int. Press, Somerville (2008)

    Google Scholar 

  40. Seidel, P.: Suspending Lefschetz fibrations, with an application to local mirror symmetry. Commun. Math. Phys. 297(2), 515–528 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Seidel, P.: Some speculations on pairs-of-pants decompositions and Fukaya categories. In: Surveys in Differential Geometry, vol. XVII, pp. 411–425. Surv. Differ. Geom., Int. Press, Boston (2012)

  42. Sheridan, N.: On the Fukaya category of a Fano hypersurface in projective space. Publ. Math. Inst. Hautes Études Sci. arXiv:1306.4143 (2013) (to appear)

  43. Smith, I.: Floer cohomology and pencils of quadrics. Invent. Math. 189(1), 149–250 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951)

    Book  MATH  Google Scholar 

  45. Viterbo, C.: Functors and computations in Floer homology with applications. I. Geom. Funct. Anal. 9(5), 985–1033 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Weibel, C.A.: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Acknowledgments

We thank Mohammed Abouzaid for his continuing interest in the project; Denis Auroux and Sheel Ganatra for helpful conversations; the anonymous referee for very extensive comments; Janko Latschev and the referee for pointing out the method in 3.13 to implicitly construct the auxiliary data (previous arXiv versions make explicit constructions); Nick Sheridan and the referee for pointing out how to adapt the proof of the eigensummand decomposition for \({\mathrm {OC}}\) directly to \({\mathrm {CO}}\) in Theorem 9.6, bypassing duality issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander F. Ritter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritter, A.F., Smith, I. The monotone wrapped Fukaya category and the open-closed string map. Sel. Math. New Ser. 23, 533–642 (2017). https://doi.org/10.1007/s00029-016-0255-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0255-9

Mathematics Subject Classification

Navigation