Skip to main content
Log in

Shape-Adjustable Generalized Bézier Rotation Surfaces with Multiple Shape Parameters

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

To tackle the problems in adjusting and controlling shapes of rotation surfaces, a new efficient method for quickly constructing generalized Bézier rotation surfaces with multiple shape parameters is proposed. Firstly, following the important idea of transfinite vectored rational interpolating function, the shape-adjustable generalized Bézier rotation surfaces are constructed using a generalized Bézier curve with multiple shape parameters. Secondly, the explicit function expression of the shape-adjustable generalized Bézier rotation surfaces is presented. The new rotation surfaces inherit the outstanding properties of the Bézier rotation surfaces, with a good performance on adjusting their local shapes by changing the shape parameters. Finally, some properties of the new rotation surfaces are discussed, and the influence rules of the shape parameters on the new rotation surfaces are studied. The modeling examples illustrate that the shape-adjustable generalized Bézier rotation surfaces provide a valuable way for the design of rotation surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  2. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Academic Press, San Diego (2002)

    Google Scholar 

  3. Farin, G., Piper, B., Worsey, A.: The octant of a sphere as a non-degenerate triangular Bézier patch. Comput. Aided Geom. Des. 4(4), 329–332 (1987)

    Article  MATH  Google Scholar 

  4. Wang, G.J.: A new method for representing the surface of revolution using rational B-splines in CAD. J. Softw. 1(4), 24–39 (1990)

    Google Scholar 

  5. Kang, B.S., Ma, X., Zhou, R.R.: On the representation of revolution surface and sphere by NURBS polynomial. J. Nanjing Univ. Aeronaut. Astronaut. 26(1), 80–87 (1994)

    MATH  Google Scholar 

  6. Zeng, T.J., Wang, W.M., Zhang, J.W.: Study on surfaces of revolution modeling with C-B-splines. J. Graph. 25(2), 104–108 (2004)

    Google Scholar 

  7. Ma, S.J., Liu, X.M.: Research of rotate surface of uniform T-B-spline. Comput. Eng. Des. 29(16), 4255–4256 (2008)

    Google Scholar 

  8. Ding, H., Zhu, L.M.: Geometric Theories and Methods for Digital Manufacturing of Complex Surfaces. Science Press, Beijing (2011)

    Google Scholar 

  9. Bourguignon, D., Cani, M.P., Drettakis, G.: Drawing for illustration and annotation in 3D. Comput. Graph. Forum 20(3), 114–122 (2001)

    Article  Google Scholar 

  10. Dai, C.L., Ding, Y.L., Lu, X.: On generalized revolving surface based on metamorphose curve. Mech. Sci. Technol. 21(4), 537–539 (2002)

    Google Scholar 

  11. Rodrigues, A.B., Jorge, J.A.: Free form modeling with variational implicit surfaces. In: Proceedings of the 12th Encontro Português de Computacao Gráfica, pp.17–26. Porto, Portugal (2003)

  12. Wong, K.Y.K., Mendonca, P.R.S., Cipolla, R.: Reconstruction of surfaces of revolution from single uncalibrated views. Image Vis. Comput. 22(10), 829–836 (2004)

    Article  Google Scholar 

  13. Colombo, C., Bimbo, A.D., Pernici, F.: Metric 3D reconstruction and texture acquisition of surfaces of revolution from a single uncalibrated view. IEEE Trans. Pattern Anal. 27(1), 99–114 (2005)

    Article  Google Scholar 

  14. Wu, Y.H., Wang, G.H., Wu, F.C., Hu, Z.Y.: Euclidean reconstruction of a circular truncated cone only from its uncalibrated contours. Image Vis. Comput. 24(8), 810–818 (2006)

    Article  Google Scholar 

  15. Li, X.J., Liu, H., He, G., Liao, W.: Generation and shape adjustment of revolution surface based on stream curve. Mech. Sci. Technol. 27(3), 326–329 (2008)

    Google Scholar 

  16. Han, L., Raffaele, D.A.: Rotation surface modeling technique by cubic B-spline free drawing. J. Chin. Comput. Syst. 30(7), 1141–1144 (2009)

    Google Scholar 

  17. Gong, X.P., Li, M.Z., Lu, Q.P., Peng, Z.Q.: Continuous forming for rotary surface based on multi-point adjusting principle. Opt. Precis. Eng. 20(1), 117–123 (2012)

    Article  Google Scholar 

  18. Wang, Y., Fang, M.: Non-homogeneous subdivision method of revolution surfaces based on generalized B-spline. J. Hangzhou Dianzi Univ. 33(2), 25–28 (2013)

    Google Scholar 

  19. Lionel, G., Hichem, B., Sebti, F.: Dupin cyclide blends between non-natural quadrics of revolution and concrete shape modeling applications. Comput. Graph. 42(1), 31–41 (2014)

    Google Scholar 

  20. Tan, J.Q.: Continued Fractions Theory and its Application. Science Press, Beijing (2007)

    Google Scholar 

  21. Gu, C.Q.: Bivariate Thiele-type matrix-valued rational interpolants. J. Comput. Appl. Math. 80(1), 71–82 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tan, J.Q., Tang, S.: Bivariate composite vector valued interpolation. Math. Comput. 69(232), 1521–1532 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhu, X.L.: A new method for constructing circular arc. J. Hefei Univ. Technol. 25(2), 269–272 (2002)

    Google Scholar 

  24. Kim, S.H., Ahn, Y.J.: An approximation of circular arcs by quartic Bézier curves. Comput. Aided Des. 39(6), 490–493 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Wei, G. & Wu, J. Shape-Adjustable Generalized Bézier Rotation Surfaces with Multiple Shape Parameters. Results Math 72, 1281–1313 (2017). https://doi.org/10.1007/s00025-017-0659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0659-7

Mathematics Subject Classification

Keywords

Navigation