Skip to main content
Log in

An Eulerian–Lagrangian Form for the Euler Equations in Sobolev Spaces

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In 2000 Constantin showed that the incompressible Euler equations can be written in an “Eulerian–Lagrangian” form which involves the back-to-labels map (the inverse of the trajectory map for each fixed time). In the same paper a local existence result is proved in certain Hölder spaces \({C^{1,\mu}}\). We review the Eulerian–Lagrangian formulation of the equations and prove that given initial data in H s for \({n \geq 2}\) and \({s > \frac{n}{2}+1}\), a unique local-in-time solution exists on the n-torus that is continuous into H s and C 1 into H s-1. These solutions automatically have C 1 trajectories. The proof here is direct and does not appeal to results already known about the classical formulation. Moreover, these solutions are regular enough that the classical and Eulerian–Lagrangian formulations are equivalent, therefore what we present amounts to an alternative approach to some of the standard theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Constantin P.: An Eulerian–Lagrangian approach for incompressible fluids: local theory. J. Am. Math. Soc. 14, 263–278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constantin P.: An Eulerian–Lagrangian approach to the Navier–Stokes equations. Commun. Math. Phys. 216, 663–686 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Constantin, P.: Near identity transformations for the Navier–Stokes equations. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. II, pp. 117–141. North-Holland, Amsterdam (2003)

  5. Constantin P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44, 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin P., Foias C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  7. DeLellis C., Szekelyhidi L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gibbon J.D.: The three-dimensional Euler equations: where do we stand?. Phys. D. 237, 1894–1904 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Günther N.M.: Über ein Hauptproblem der Hydrodynamik. Math. Z. 24, 448–499 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kato T.: Nonstationary flows of viscous and ideal fluids in \({{\mathbb R}^3}\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kato T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Everitt, W.N. (ed.) Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol. 448, pp. 25–70. Springer, Berlin (1974)

    Google Scholar 

  12. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  13. Lichtenstein L.: Über einige Existenzprobleme der Hydrodynamik. Math. Z. 26, 196–323 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pooley, B.C.: On a model for the Navier–Stokes equations using magnetization variables. arXiv:1601.04968

  15. Robinson J.C., Sadowski W.: Almost-everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three-dimensional Navier–Stokes equations. Nonlinearity 22, 2093–2099 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Robinson J.C., Sadowski W., Silva R.P.: Lower bounds on blow up solutions of the three-dimensional Navier-Stokes equations in homogeneous Sobolev spaces. J. Math. Phys. 53, 115618 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Wiedemann E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 727–730 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Yudovich, V.I.: Global Solvability Versus Collapse in the Dynamics of an Incompressible Fluid. In: Bolibruch, A. A., Osipov, Yu. S., Sinai, Ya. G. (eds.) Mathematical Events of the Twentieth Century. pp. 501–528. Springer, Berlin (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin C. Pooley.

Additional information

Communicated by R. Shvydkoy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pooley, B.C., Robinson, J.C. An Eulerian–Lagrangian Form for the Euler Equations in Sobolev Spaces. J. Math. Fluid Mech. 18, 783–794 (2016). https://doi.org/10.1007/s00021-016-0271-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0271-8

Mathematics Subject Classification

Keywords

Navigation