Skip to main content
Log in

Pressure Transfer Functions for Interfacial Fluids Problems

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We make a consistent derivation, from the governing equations, of the pressure transfer function in the small-amplitude Stokes wave regime and the hydrostatic approximation in the small-amplitude solitary water wave regime, in the presence of a background shear flow. The results agree with the well-known formulae in the zero vorticity case, but they incorporate the effects of vorticity through solutions to the Rayleigh equation. We extend the results to permit continuous density stratification and to internal waves between two constant-density fluids. Several examples are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick C.J.: Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11, 441–499 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Amick C.J., Toland J.F.: On solitary water-waves of finite amplitude. Arch. Ration. Mech. Anal. 76, 9–95 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amick C.J., Turner R.E.L.: A global theory of internal solitary waves in two-fluid systems. Trans. Am. Math. Soc. 298, 431–484 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beale J.T.: The existence of solitary water waves. Commun. Pure Appl. Math. 30, 373–389 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bishop C.T., Donelan M.A.: Measuring waves with pressure transducers. Coast. Eng. 11, 309–328 (1987)

    Article  Google Scholar 

  6. Bühler, O., Walsh, S., Shatah, J., Zeng, C.: On the wind generation of water waves. Arch. Ration. Mech. Anal. (2016). doi:10.1007/s00205-016-1012-0

  7. Burns, J.C.: Long waves in running water. Proc. Camb. Philos. Soc. 49, 695–706 (1953). With an appendix by M. J. Lighthill

  8. Chen, R.M., Walsh, S.: Reconstruction of stratified steady water waves from pressure readings. Preprint. arXiv:1502.07775

  9. Chen R.M., Walsh S.: Continuous dependence on the density for stratified steady water waves. Arch. Ration. Mech. Anal. 219, 741–792 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, R.M., Walsh, S., Wheeler, M.H.: On the existence and qualitative theory of stratified solitary water waves. C. R. Math. 354(6), 601–605 (2016). doi:10.1016/j.crma.2016.03.004

  11. Chen, R.M., Walsh, S., Wheeler M.H.: Existence and qualitative theory for stratified solitary water waves. Preprint. arXiv:1601.05130

  12. Clamond D.: New exact relations for easy recovery of steady wave profiles from bottom pressure measurements. J. Fluid Mech. 726, 547–558 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Clamond D., Constantin A.: Recovery of steady periodic wave profiles from pressure measurements at the bed. J. Fluid Mech. 714, 463–475 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Constantin, A.: Nonlinear water waves with applications to wave–current interactions and tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

  15. Constantin A.: On the recovery of solitary wave profiles from pressure measurements. J. Fluid Mech. 699, 376–384 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Constantin A.: The flow beneath a periodic travelling surface water wave. J. Phys. A: Math. Theor. 48, 143001 (2015)

    Article  ADS  MATH  Google Scholar 

  17. Constantin A., Ehrnström M., Wahlén E.: Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J. 140, 591–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin A., Henry D.: Solitons and tsunamis. Z. Naturforsch. A 64, 65–68 (2009)

    Article  ADS  Google Scholar 

  19. Constantin A., Johnson R.S.: Modelling tsunamis. J. Phys. A 39, L215–L217 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Constantin A., Johnson R.S.: On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves. J. Nonlinear Math. Phys. 15, 58–73 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Constantin A., Johnson R.S.: Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dyn. Res. 40, 175–211 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Constantin A., Kalimeris K., Scherzer O.: Approximations of steady periodic water waves in flows with constant vorticity. Nonlinear Anal. Real World Appl. 25, 276–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Constantin A., Strauss W.: Pressure beneath a Stokes wave. Commun. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Constantin A., Strauss W.: Periodic traveling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal. 202, 133–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Constantin, A., Strauss, W., Varvaruca, E.: Global bifurcation of steady gravity water waves with critical layers. Acta Math. (to appear)

  27. Da Silva A.F., Peregrine D.H.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–302 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. Deconinck, B., Oliveras, K.L., Vasan, V.: Relating the bottom pressure and the surface elevation in the water wave problem. J. Nonlinear Math. Phys. 19, 1240014, 11 (2012)

  29. Dubreil-Jacotin M.: Sur les theoremes d’existence relatifs aux ondes permanentes periodiques a deux dimensions dans les liquides heterogenes. J. Math. Pures Appl. 16, 43–67 (1937)

    MATH  Google Scholar 

  30. Ehrnström M., Escher J., Wahlén E.: Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43, 1436–1456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Escher J., Matioc A.-V., Matioc B.-V.: On stratified steady periodic water waves with linear density distribution and stagnation points. J. Differ. Equ. 251, 2932–2949 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Escher J., Schlurmann T.: On the recovery of the free surface from the pressure within periodic traveling water waves. J. Nonlinear Math. Phys. 15, 50–57 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. Friedrichs K.O., Hyers D.H.: The existence of solitary waves. Commun. Pure Appl. Math. 7, 517–550 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  34. Groves M.D.: Steady water waves. J. Nonlinear Math. Phys. 11, 435–460 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Groves M.D., Wahlén E.: Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Phys. D 237, 1530–1538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Henry D.: Pressure in a deep-water Stokes wave. J. Math. Fluid Mech. 13, 251–257 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Henry D.: On the pressure transfer function for solitary water waves on the pressure transfer function for solitary water waves with vorticity. Math. Ann. 357, 23–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Henry D., Matioc A.-V.: Global bifurcation of capillary-gravity-stratified water waves. Proc. R. Soc. Edinb. Sect. A 144, 775–786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Henry D., Matioc B.-V.: On the existence of steady periodic capillary-gravity stratified water waves. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12, 955–974 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Hur, V.M.: Global bifurcation theory of deep-water waves with vorticity. SIAM J. Math. Anal. 37, 1482–1521 (2006) (electronic)

  41. Hur V.M.: Symmetry of steady periodic water waves with vorticity. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365, 2203–2214 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Hur V.M.: Exact solitary water waves with vorticity. Arch. Ration. Mech. Anal. 188, 213–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hur V.M.: Stokes waves with vorticity. J. Anal. Math. 113, 331–386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hur, V.M.: Analyticity of rotational flows beneath solitary water waves. Int. Math. Res. Not. IMRN 2012(11), 2550–2570 (2012). doi:10.1093/imrn/rnr123

  45. Hur V.M., Lin Z.: Unstable surface waves in running water. Commun. Math. Phys. 282, 733–796 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hur, V.M., Livesay, M.R.: On the recovery of traveling water waves with vorticity from the pressure at the bed (2015). Preprint. arXiv:1510.02396

  47. James G.: Internal travelling waves in the limit of a discontinuously stratified fluid. Arch. Ration. Mech. Anal. 160, 41–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Janssen P.: The Interaction of Ocean Waves and Wind. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  49. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1997)

  50. Karageorgis P.: Dispersion relation for water waves with non-constant vorticity. Eur. J. Mech. B Fluids 34, 7–12 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Kinsman B.: Wind Waves: Their Generation and Propagation on the Ocean Surface. Courier Corporation, North Chelmsford (1965)

  52. Ko J., Strauss W.: Effect of vorticity on steady water waves. J. Fluid Mech. 608, 197–215 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Ko J., Strauss W.: Large-amplitude steady rotational water waves. Eur. J. Mech. B Fluids 27, 96–109 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Kogelbauer F.: Recovery of the wave profile for irrotational periodic water waves from pressure measurements. Nonlinear Anal. Real World Appl. 22, 219–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kuo Y.-Y., Chiu Y.-F.: Transfer function between wave height and wave pressure for progressive waves. Coast. Eng. 23, 81–93 (1994)

    Article  Google Scholar 

  56. Lankers K., Friesecke G.: Fast, large-amplitude solitary waves in the 2d euler equations for stratified fluids. Nonlinear Anal. 29, 1061–1078 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lyons, T.: The pressure distribution in extreme Stokes waves. Nonlinear Anal. Real World Appl. 31, 77–87 (2016). doi:10.1016/j.nonrwa.2016.01.008

  58. Lyons, T.: The pressure in a deep-water Stokes wave of greatest height. J. Math. Fluid Mech. 18, 209–218 (2016). doi:10.1007/s00021-016-0249-6

  59. Matioc B.-V.: Global bifurcation for water waves with capillary effects and constant vorticity. Monatsh. Math. 174, 459–475 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Okamoto H., Shoji M.: The Mathematical Theory of Permanent Progressive Water-Waves, vol 20. Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co. Inc., River Edge (2001)

    Book  Google Scholar 

  61. Oliveras K.L., Vasan V., Deconinck B., Henderson D.: Recovering the water-wave profile from pressure measurements. SIAM J. Appl. Math. 72, 897–918 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Peregrine D.: Interaction of water waves and currents. Adv. Appl. Mech. 16, 9–117 (1976)

    Article  MATH  Google Scholar 

  63. Plotnikov P.I., Toland, J.F.: The Fourier coefficients of Stokes’ waves. In: Nonlinear Problems in Mathematical Physics and Related Topics, I. Int. Math. Ser. (N. Y.), vol. 1, pp. 303–315. Kluwer/Plenum, New York (2002)

  64. Schiereck G.J.: Introduction to Bed, Bank and Shore Protection. CRC Press, Boca Raton (2003)

    Google Scholar 

  65. Shatah J., Zeng C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199, 653–705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Stokes G.G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441–455 (1847)

    Google Scholar 

  67. Strauss W.A.: Steady water waves. Bull. Am. Math. Soc. (N.S.) 47, 671–694 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Stuhlmeier R.: KdV theory and the Chilean tsunami of 1960. Discrete Contin. Dyn. Syst. Ser. B 12, 623–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ter-Krikorov A.M.: Théorie exacte des ondes longues stationnaires dans un liquide hétérogène. J. Mécanique 2, 351–376 (1963)

    MathSciNet  Google Scholar 

  70. Thomas G., Klopman G.: Wave–current interactions in the near shore region. Adv. Fluid Mech. 10, 255–319 (1997)

    Google Scholar 

  71. Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  72. Turner R.E.L.: Internal waves in fluids with rapidly varying density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8, 513–573 (1981)

    MathSciNet  MATH  Google Scholar 

  73. Turner R.E.L.: A variational approach to surface solitary waves. J. Differ. Equ. 55, 401–438 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Varvaruca E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246, 4043–4076 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Varvaruca E., Weiss G.S.: The Stokes conjecture for waves with vorticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 861–885 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Vasan V., Oliveras K.: Pressure beneath a traveling wave with constant vorticity. Discrete Contin. Dyn. Syst. 34, 3219–3239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Wahlén E.: Steady water waves with a critical layer. J. Differ. Equ. 246, 2468–2483 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Walsh S.: Stratified and steady periodic water waves. SIAM J. Math. Anal. 41, 1054–1105 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Walsh S., Bühler O., Shatah J.: Steady water waves in the presence of wind. SIAM J. Math. Anal. 45, 2182–2227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  80. Wheeler M.H.: Large-amplitude solitary water waves with vorticity. SIAM J. Math. Anal. 45, 2937–2994 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  81. Wheeler M.H.: Solitary water waves of large amplitude generated by surface pressure. Arch. Ration. Mech. Anal. 218, 1131–1187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Walsh.

Additional information

Communicated by A. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Hur, V.M. & Walsh, S. Pressure Transfer Functions for Interfacial Fluids Problems. J. Math. Fluid Mech. 19, 59–76 (2017). https://doi.org/10.1007/s00021-016-0265-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0265-6

Mathematics Subject Classification

Keywords

Navigation