Skip to main content

Advertisement

Log in

Lansiumamide B and SB-204900 isolated from Clausena lansium inhibit histamine and TNF-α release from RBL-2H3 cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aims and objective

Mast cells play a central role in allergic and chronic inflammation. Extracts from Clausena lansium (Lour.) Skeels (Rutaceae) possess many pharmacological effects including anti-inflammatory, anti-oxidant, anti-cancer, and anti-trichomonal activities. In addition, the leaves and fruit are used in Chinese folk medicine. We have isolated and identified four known cinnamamides from this plant: lansiumamide C, lansamide I, lansiumamide B, and SB-204900. However, the biological activities of these compounds are not yet understood. The purpose of this paper is to clarify the pharmacological effects of these compounds on mast cells.

Methods

We measured inflammatory molecules in A23187-stimulated rat basophilic leukemia cells (RBL-2H3) treated with these compounds using HPLC, ELISA, and immunoblotting methods. In addition, some signaling molecules were investigated by immunoblotting.

Results

Lansamide I, lansiumamide B, and SB-204900 significantly decreased histamine release. Furthermore, lansiumamide B- and SB-204900-treated cells also reduced the protein and/or mRNA levels of TNF-α. SB-204900 markedly suppressed the phosphorylation of p38 MAPK.

Conclusion

Our findings suggest that lansiumamide B and SB-204900 attenuate mast-cell-induced inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Metcalfe DD. Mast cells and mastocytosis. Blood. 2008;112:946–56.

    Article  PubMed  CAS  Google Scholar 

  2. Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y. Mast cells in atopic dermatitis. Curr Opin Immunol. 2009;21:666–78.

    Article  PubMed  CAS  Google Scholar 

  3. Nigrovic PA, Lee DM. Synovial mast cells: role in acute and chronic arthritis. Immunol Rev. 2007;217:19–37.

    Article  PubMed  CAS  Google Scholar 

  4. Abramson J, Pecht I. Regulation of the mast cell response to the type 1 Fcε receptor. Immunol Rev. 2007;217:231–54.

    Article  PubMed  CAS  Google Scholar 

  5. Rivera J. Molecular adapters in FcεRI signaling and the allergic response. Curr Opin Immunol. 2002;14:688–93.

    Article  PubMed  CAS  Google Scholar 

  6. Sarkar FH, Li Y, Wang Z, Padhye S. Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des. 2010;16:1801–12.

    Article  PubMed  CAS  Google Scholar 

  7. Park HH, Lee S, Son HY, Park SB, Kim MS, Choi EJ, et al. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res. 2008;31:1303–11.

    Article  PubMed  CAS  Google Scholar 

  8. Murata T, Itoigawa M, Ito C, Nakao K, Tsuboi M, Kaneda N, et al. Induction of apoptosis in human leukaemia HL-60 cells by furanone-coumarins from Murraya siamensis. J Pharm Pharmacol. 2008;60:385–9.

    Article  PubMed  CAS  Google Scholar 

  9. Matsui T, Ito C, Itoigawa M, Okada T, Furukawa H. Effect of natsudaidain isolated from Citrus plants on TNF-α and cyclooxygenase-2 expression in RBL-2H3 cells. J Pharm Pharmacol. 2009;61:109–14.

    PubMed  CAS  Google Scholar 

  10. Matsui T, Ito C, Itoigawa M, Okada T, Furukawa H. Anti-inflammatory activity of phenylpropanoids and phytoquinoids from Illicium species in RBL-2H3 cells. Planta Med. 2007;73:662–5.

    Article  PubMed  CAS  Google Scholar 

  11. Prasad KN, Hao J, Yi C, Zhang D, Qiu S, Jiang Y, et al. Antioxidant and anticancer activities of wampee (Clausena lansium (Lour.) Skeels) peel. J Biomed Biotechnol. 2009;2009:1–6.

    Article  Google Scholar 

  12. Tang K, Zhang JT. Mechanism of (−) clausenamide induced calcium transient in primary culture of rat cortical neurons. Life Sci. 2004;74:1427–34.

    Article  PubMed  CAS  Google Scholar 

  13. Adebajo AC, Iwalewa EO, Obuotor EM, Ibikunle GF, Omisore NO, Adewunmi CO, et al. Pharmacological properties of the extract and some isolated compounds of Clausena lansium stem bark: anti-trichomonal, antidiabetic, anti-inflammatory, hepatoprotective and antioxidant effects. J Ethnopharmacol. 2009;122:10–9.

    Article  PubMed  CAS  Google Scholar 

  14. Maneerat W, Ritthiwigrom T, Cheenpracha S, Laphookhieo S. Carbazole alkaloids and coumarins from Clausena lansium roots. Phytochem Lett. 2012;5:26–8.

    Article  CAS  Google Scholar 

  15. Feng Z, Li X, Zheng G, Huang L. Synthesis and activity in enhancing long-term potentiation (LTP) of clausenamide stereoisomers. Bioorg Med Chem Lett. 2009;19:2112–5.

    Article  PubMed  CAS  Google Scholar 

  16. Ito C. Search for novel anti-inflammatory agents having the inhibitory activity on histamine release from higher plants. Bull Res Inst Meijo Univ. 2012;17:39–42.

    CAS  Google Scholar 

  17. Milner PH, Coates NJ, Gilpin ML, Spear SR. SB-204900, a novel oxirane carboxamide from Clausena lansium. J Nat Prod. 1996;59:400–2.

    Article  CAS  Google Scholar 

  18. Lin J-H. Cinnamamide derivatives from Clausena lansium. Phytochemistry. 1989;28:621–2.

    Article  CAS  Google Scholar 

  19. Oh HA, Kim HM, Jeong HJ. Distinct effects of imperatorin on allergic rhinitis: imperatorin inhibits caspase-1 activity in vivo and in vitro. J Pharmacol Exp Ther. 2011;339:72–81.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang D, Huang C, Yang C, Liu RJ, Wang J, Niu J, et al. Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respir Res. 2011;12:154.

    Article  PubMed  CAS  Google Scholar 

  21. Kim D-C, Lee W, Bae J-S (2011) Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res 60:1161–1168.

    Google Scholar 

  22. Yin Y, Gong FY, Wu XX, Sun Y, Li YH, Chen T, et al. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J Ethnopharmacol. 2008;120:1–6.

    Article  PubMed  CAS  Google Scholar 

  23. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822:21–33.

    Article  PubMed  CAS  Google Scholar 

  24. Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ. Mast cells as regulators of adaptive immunity to tumours. Clin Exp Immunol. 2008;155:140–6.

    Article  PubMed  Google Scholar 

  25. Passante E, Frankish N. The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell. Inflamm Res. 2009;58:737–45.

    Article  PubMed  CAS  Google Scholar 

  26. Gilfillan AM, Beaven MA. Regulation of mast cell responses in health and disease. Crit Rev Immunol. 2011;31:475–529.

    Article  PubMed  CAS  Google Scholar 

  27. Baumgartner RA, Ozawa K, Cunha-Melo JR, Yamada K, Gusovsky F, Beaven MA. Studies with transfected and permeabilized RBL-2H3 cells reveal unique inhibitory properties of protein kinase C γ. Mol Biol Cell. 1994;5:475–84.

    PubMed  CAS  Google Scholar 

  28. Ozawa K, Yamada K, Kazanietz MG, Blumberg PM, Beaven MA. Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL-2H3 cells. J Biol Chem. 1993;268:2280–3.

    PubMed  CAS  Google Scholar 

  29. Ozawa K, Szallasi Z, Kazanietz MG, Blumberg PM, Mischak H, Mushinski JF, et al. Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J Biol Chem. 1993;268:1749–56.

    PubMed  CAS  Google Scholar 

  30. Klemm S, Ruland J. Inflammatory signal transduction from the Fcε RI to NF-κ B. Immunobiology. 2006;211:815–20.

    Article  PubMed  CAS  Google Scholar 

  31. Kawakami Y, Kitaura J, Yao L, McHenry RW, Kawakami Y, Newton AC, et al. A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proc Natl Acad Sci USA. 2003;100:9470–5.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y, Graham C, Parravicini V, Brown MJ, Rivera J, Shaw S. Protein kinase C θ is expressed in mast cells and is functionally involved in Fcε receptor I signaling. J Leukoc Biol. 2001;69:831–40.

    PubMed  CAS  Google Scholar 

  33. Kandere-Grzybowska K, Kempuraj D, Cao J, Cetrulo CL, Theoharides TC. Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br J Pharmacol. 2006;148:208–15.

    Article  PubMed  CAS  Google Scholar 

  34. Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N, et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol. 2005;145:934–44.

    Article  PubMed  CAS  Google Scholar 

  35. Hochdörfer T, Kuhny M, Zorn CN, Hendriks RW, Vanhaesebroeck B, Bohnacker T, et al. Activation of the PI3 K pathway increases TLR-induced TNF-α and IL-6 but reduces IL-1β production in mast cells. Cell Signal. 2011;23:866–75.

    Article  PubMed  Google Scholar 

  36. Huang P, Han J, Hui L. MAPK signaling in inflammation-associated cancer development. Protein Cell. 2010;1:218–26.

    Article  PubMed  CAS  Google Scholar 

  37. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. p38MAPK: stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 2009;15:369–79.

    Article  PubMed  CAS  Google Scholar 

  38. Hundley TR, Prasad AR, Beaven MA. Elevated levels of cyclooxygenase-2 in antigen-stimulated mast cells is associated with minimal activation of p38 mitogen-activated protein kinase. J Immunol. 2001;167:1629–36.

    PubMed  CAS  Google Scholar 

  39. Guan Z, Buckman SY, Pentland AP, Templeton DJ, Morrison AR. Induction of cyclooxygenase-2 by the activated MEKK1 → SEK1/MKK4 → p38 mitogen-activated protein kinase pathway. J Biol Chem. 1998;273:12901–8.

    Article  PubMed  CAS  Google Scholar 

  40. Hwang D, Jang BC, Yu G, Boudreau M. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide: mediation through both mitogen-activated protein kinase and NF-κB signaling pathways in macrophages. Biochem Pharmacol. 1997;54:87–96.

    Article  PubMed  CAS  Google Scholar 

  41. Gibbs BF, Plath KE, Wolff HH, Grabbe J. Regulation of mediator secretion in human basophils by p38 mitogen-activated protein kinase: phosphorylation is sensitive to the effects of phosphatidylinositol 3-kinase inhibitors and calcium mobilization. J Leukoc Biol. 2002;72:391–400.

    PubMed  CAS  Google Scholar 

  42. Azzolina A, Guarneri P, Lampiasi N. Involvement of p38 and JNK MAPKs pathways in Substance P-induced production of TNF-α by peritoneal mast cells. Cytokine. 2002;18:72–80.

    Article  PubMed  CAS  Google Scholar 

  43. Teixeira CC, Fuchs FD. The efficacy of herbal medicines in clinical models: the case of jambolan. J Ethnopharmacol. 2006;108:16–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Matsui.

Additional information

Responsible Editor: Andras Falus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, T., Ito, C., Furukawa, H. et al. Lansiumamide B and SB-204900 isolated from Clausena lansium inhibit histamine and TNF-α release from RBL-2H3 cells. Inflamm. Res. 62, 333–341 (2013). https://doi.org/10.1007/s00011-012-0586-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0586-8

Keywords

Navigation