Skip to main content
Log in

An A 4 × \( {{\mathbb{Z}}_4} \) model for neutrino mixing

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The A 4 × U(1) flavor model of He, Keum, and Volkas is extended to provide a minimal modification to tribimaximal mixing that accommodates a nonzero reactor angle θ 13 ~ 0.1. The sequestering problem is circumvented by forbidding superheavy scales and large coupling constants which would otherwise generate sizable RG flows. The model is compatible with (but does not require) a stable or metastable dark matter candidate in the form of a complex scalar field with unit charge under a discrete subgroup \( {{\mathbb{Z}}_4} \) of the U(1) flavor symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Georgi, Towards a grand unified theory of flavor, Nucl. Phys. B 156 (1979) 126 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. De Rújula, H. Georgi and S. Glashow, A theory of flavor mixing, Annals Phys. 109 (1977) 258 [INSPIRE].

    Article  ADS  Google Scholar 

  3. F. Wilczek and A. Zee, Discrete flavor symmetries and a formula for the Cabibbo angle, Phys. Lett. B 70 (1977) 418 [Erratum ibid. B 72 (1978) 504] [INSPIRE].

  4. G. Sartori, Discrete symmetries, natural flavor conservation and weak mixing angles, Phys. Lett. B 82 (1979) 255 [INSPIRE].

    ADS  Google Scholar 

  5. E. Derman and H.-S. Tsao, [SU(2) × U(1)] × S n flavor dynamics and a bound on the number of flavors, Phys. Rev. D 20 (1979) 1207 [INSPIRE].

    ADS  Google Scholar 

  6. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].

    ADS  Google Scholar 

  7. X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Babu, E. Ma and J. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].

    ADS  Google Scholar 

  9. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, arXiv:1209.3023 [INSPIRE].

  10. K. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [INSPIRE].

  11. W. Grimus and L. Lavoura, TeV-scale seesaw mechanism catalyzed by the electron mass, Phys. Lett. B 687 (2010) 188 [arXiv:0912.4361] [INSPIRE].

    ADS  Google Scholar 

  12. E. Ma, Naturally small seesaw neutrino mass with no new physics beyond the TeV scale, Phys. Rev. Lett. 86 (2001) 2502 [hep-ph/0011121] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R.A. Porto and A. Zee, The private Higgs, Phys. Lett. B 666 (2008) 491 [arXiv:0712.0448] [INSPIRE].

    ADS  Google Scholar 

  14. W. Grimus, L. Lavoura and B. Radovčić, Type II seesaw mechanism for Higgs doublets and the scale of new physics, Phys. Lett. B 674 (2009) 117 [arXiv:0902.2325] [INSPIRE].

    ADS  Google Scholar 

  15. X.-G. He and A. Zee, Minimal modification to the tri-bimaximal neutrino mixing, Phys. Lett. B 645 (2007) 427 [hep-ph/0607163] [INSPIRE].

    ADS  Google Scholar 

  16. X.-G. He and A. Zee, Minimal modification to tri-bimaximal mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].

    ADS  Google Scholar 

  17. J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  18. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  19. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  20. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. D.E. Holz and A. Zee, Collisional dark matter and scalar phantoms, Phys. Lett. B 517 (2001) 239 [hep-ph/0105284] [INSPIRE].

    ADS  Google Scholar 

  22. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].

    Article  ADS  Google Scholar 

  23. Fermi LAT collaboration, M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, Gamma ray constraints on decaying dark matter, Phys. Rev. D 86 (2012) 083506 [arXiv:1205.5283] [INSPIRE].

    ADS  Google Scholar 

  25. E. Ma, Neutrino tribimaximal mixing from A 4 alone, Mod. Phys. Lett. A 25 (2010) 2215 [arXiv:0908.3165] [INSPIRE].

    ADS  Google Scholar 

  26. S.F. King, Vacuum misalignment corrections to tri-bimaximal mixing and form dominance, JHEP 01 (2011) 115 [arXiv:1011.6167] [INSPIRE].

    Article  ADS  Google Scholar 

  27. W. Chao and Y.-J. Zheng, Relatively large θ 13 from modification to the tri-bimaximal, bimaximal and democratic neutrino mixing matrices, arXiv:1107.0738 [INSPIRE].

  28. A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].

    ADS  Google Scholar 

  30. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  31. C.T. Hill, C.N. Leung and S. Rao, Renormalization group fixed points and the Higgs boson spectrum, Nucl. Phys. B 262 (1985) 517 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoni BenTov.

Additional information

ArXiv ePrint: 1208.1062

Rights and permissions

Reprints and permissions

About this article

Cite this article

BenTov, Y., He, XG. & Zee, A. An A 4 × \( {{\mathbb{Z}}_4} \) model for neutrino mixing. J. High Energ. Phys. 2012, 93 (2012). https://doi.org/10.1007/JHEP12(2012)093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)093

Keywords

Navigation