Skip to main content
Log in

Gravitational contributions to gauge Green’s functions and asymptotic free power-law running of gauge coupling

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform an explicit one-loop calculation for the gravitational contributions to the two-, three- and four-point gauge Green’s functions with paying attention to the quadratic divergences. It is shown for the first time in the diagrammatic calculation that the Slavnov-Taylor identities are preserved even if the quantum graviton effects are included at one-loop level, such a conclusion is independent of the choice of regularization schemes. We also present a regularization scheme independent calculation based on the gauge condition independent background field framework of Vilkovisky-DeWitt’s effective action with focusing on both the quadratic divergence and quartic divergence that is not discussed before. With the harmonic gauge condition, the results computed by using the traditional background field method can consistently be recovered from the Vilkovisky-DeWitt’s effective action approach by simply taking a limiting case, and are found to be the same as the ones yielded by the diagrammatic calculation. As a consequence, in all the calculations, the symmetry-preserving and divergent-behavior-preserving loop regularization method can consistently lead to a nontrivial gravitational contribution to the gauge coupling constant with an asymptotic free power-law running at one loop near the Planck scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ť Hooft and M. Veltman, One-loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré A 20 (1974) 69.

    ADS  Google Scholar 

  2. S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the Quantized Einstein-Maxwell System, Phys. Rev. Lett. 32 (1974) 245.

    Article  ADS  Google Scholar 

  3. S. Deser and P. van Nieuwenhuizen, One-loop divergences of quantized Einstein-Maxwell fields, Phys. Rev. D 10 (1974) 401.

    ADS  Google Scholar 

  4. S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system, Phys. Rev. D 10 (1974) 411.

    ADS  Google Scholar 

  5. S. Deser, H.-S. Tsao and P. van Nieuwenhuizen, One Loop Divergences of the Einstein Yang-Mills System, Phys. Rev. D 10 (1974) 3337 [INSPIRE].

    ADS  Google Scholar 

  6. J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett. 72 (1994) 2996 [gr-qc/9310024] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

    ADS  Google Scholar 

  8. Cliff P. Burgess, Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082].

    Google Scholar 

  9. S.P. Robinson and F. Wilczek, Gravitational correction to running of gauge couplings, Phys. Rev. Lett. 96 (2006) 231601 [hep-th/0509050] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A.R. Pietrykowski, Gauge dependence of gravitational correction to running of gauge couplings, Phys. Rev. Lett. 98 (2007) 061801 [hep-th/0606208] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D.J. Toms, Quantum gravity and charge renormalization, Phys. Rev. D 76 (2007) 045015 [arXiv:0708.2990] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. G. Vilkovisky, The Unique Effective Action in Quantum Field Theory, Nucl. Phys. B 234 (1984) 125 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. G.A. Vilkovisky, The Quantum Theory of Gravity, S.M. Christensen eds., Adam Hilger, Bristol U.K. (1984).

    Google Scholar 

  14. B.S. DeWitt, in Quantum Field Theory and Quantum Statistics, Vol. 1, I.A. Batalin, C.J. Isham and G.A. Vilkovisky eds., Adam Hilger, Bristol U.K. (1987).

    Google Scholar 

  15. G. ť Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Ebert, J. Plefka and A. Rodigast, Absence of gravitational contributions to the running Yang-Mills coupling, Phys. Lett. B 660 (2008) 579 [arXiv:0710.1002] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. Y. Tang and Y.-L. Wu, Gravitational Contributions to the Running of Gauge Couplings, Commun. Theor. Phys. 54 (2010) 1040 [arXiv:0807.0331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. Y.-L. Wu, Symmetry principle preserving and infinity free regularization and renormalization of quantum field theories and the mass gap, Int. J. Mod. Phys. A 18 (2003) 5363 [hep-th/0209021] [INSPIRE].

    ADS  Google Scholar 

  19. Y.-L. Wu, Symmetry preserving loop regularization and renormalization of QFTs, Mod. Phys. Lett. A 19 (2004) 2191 [hep-th/0311082] [INSPIRE].

    ADS  Google Scholar 

  20. J.-E. Daum, U. Harst and M. Reuter, Running Gauge Coupling in Asymptotically Safe Quantum Gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Wu and M. Zhong, The Lee-Wick fields out of gravity, Phys. Lett. B 659 (2008) 694 [arXiv:0705.3287] [INSPIRE].

    ADS  Google Scholar 

  22. F. Wu and M. Zhong, The TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity, Phys. Rev. D 78 (2008) 085010 [arXiv:0807.0132] [INSPIRE].

    ADS  Google Scholar 

  23. A. Rodigast and T. Schuster, No Lee-Wick Fields out of Gravity, Phys. Rev. D 79 (2009) 125017 [arXiv:0903.3851] [INSPIRE].

    ADS  Google Scholar 

  24. A. Rodigast and T. Schuster, Gravitational Corrections to Yukawa and phi**4 Interactions, Phys. Rev. Lett. 104 (2010) 081301 [arXiv:0908.2422] [INSPIRE].

    Article  ADS  Google Scholar 

  25. O. Zanusso, L. Zambelli, G. Vacca and R. Percacci, Gravitational corrections to Yukawa systems, Phys. Lett. B 689 (2010) 90 [arXiv:0904.0938] [INSPIRE].

    ADS  Google Scholar 

  26. P.T. Mackay and D.J. Toms, Quantum gravity and scalar fields, Phys. Lett. B 684 (2010) 251 [arXiv:0910.1703] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. M.M. Anber, J.F. Donoghue and M. El-Houssieny, Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83 (2011) 124003 [arXiv:1011.3229] [INSPIRE].

    ADS  Google Scholar 

  28. Y. Tang and Y.-L. Wu, Quantum Gravitational Contributions to Gauge Field Theories, arXiv:1012.0626 [INSPIRE].

  29. E. Gerwick, Asymptotically Safe Gravitons in Electroweak Precision Physics, Eur. Phys. J. C 71 (2011) 1676 [arXiv:1012.1118] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Ellis and N.E. Mavromatos, On the Interpretation of Gravitational Corrections to Gauge Couplings, arXiv:1012:4353.

  31. S. Folkerts, D.F. Litim and J.M. Pawlowski, Asymptotic freedom of Yang-Mills theory with gravity, arXiv:1101.5552 [INSPIRE].

  32. D.F. Litim, Renormalisation group and the Planck scale, Phil. Trans. Roy. Soc. Lond. A 369 (2011)2759 [arXiv:1102.4624] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. D.J. Toms, Cosmological constant and quantum gravitational corrections to the running fine structure constant, Phys. Rev. Lett. 101 (2008) 131301 [arXiv:0809.3897] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D.J. Toms, Quantum gravity, gauge coupling constants and the cosmological constant, Phys. Rev. D 80 (2009) 064040 [arXiv:0908.3100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. D.J. Toms, Quantum gravitational contributions to quantum electrodynamics, Nature 468 (2010) 56 [arXiv:1010.0793] [INSPIRE].

    Article  ADS  Google Scholar 

  36. H.-J. He, X.-F. Wang and Z.-Z. Xianyu, Gauge-Invariant Quantum Gravity Corrections to Gauge Couplings via Vilkovisky-DeWitt Method and Gravity Assisted Gauge Unification, Phys. Rev. D 83 (2011) 125014 [arXiv:1008.1839] [INSPIRE].

    ADS  Google Scholar 

  37. A. Slavnov, Ward Identities in Gauge Theories, Theor. Math. Phys. 10 (1972) 99 [INSPIRE].

    Article  Google Scholar 

  38. J. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Weinberg, The Quantum Theory of fields. Vol. I and Vol. II, Cambridge University Press, Cambridge U.K. (2005).

    Google Scholar 

  40. Y.-B. Dai and Y.-L. Wu, Dynamically spontaneous symmetry breaking and masses of lightest nonet scalar mesons as composite Higgs bosons, Eur. Phys. J. C 39 (2005) S1 [hep-ph/0304075] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Y.-L. Ma and Y.-L. Wu, Anomaly and anomaly-free treatment of QFTs based on symmetry-preserving loop regularization, Int. J. Mod. Phys. A 21 (2006) 6383 [hep-ph/0509083] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. Y.-L. Ma and Y.-L. Wu, On the Radiatively Induced Lorentz and CPT Violating Chern-Simons Term, Phys. Lett. B 647 (2007) 427 [hep-ph/0611199] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. J.-W. Cui and Y.-L. Wu, One-Loop Renormalization of Non-Abelian Gauge Theory and β-function Based on Loop Regularization Method, Int. J. Mod. Phys. A 23 (2008) 2861 [arXiv:0801.2199] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. J.-W. Cui, Y. Tang and Y.-L. Wu, Renormalization of Supersymmetric Field Theories in Loop Regularization with String-mode Regulators, Phys. Rev. D 79 (2009) 125008 [arXiv:0812.0892] [INSPIRE].

    ADS  Google Scholar 

  45. J.-W. Cui, Y.-L. Ma and Y.-L. Wu, Explicit derivation of the QED trace anomaly in symmetry-preserving loop regularization at one-loop level, Phys. Rev. D 84 (2011) 025020 [arXiv:1103.2026] [INSPIRE].

    ADS  Google Scholar 

  46. D. Huang and Y.-L. Wu, Consistency and Advantage of Loop Regularization Method Merging with Bjorken-Drell’s Analogy Between Feynman Diagrams and Electrical Circuits, arXiv:1108.3603 [INSPIRE].

  47. L. Parker and D.J. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, Cambridge University Press, Cambridge U.K. (2009).

    Book  MATH  Google Scholar 

  48. B.S. DeWitt, The Dynamical Theory of Groups and Fields, Gordon and Breach, New York U.S.A. (1965).

    Google Scholar 

  49. L. Faddeev and V. Popov, Feynman Diagrams for the Yang-Mills Field, Phys. Lett. B 25 (1967) 29 [INSPIRE].

    ADS  Google Scholar 

  50. E. Fradkin and A.A. Tseytlin, On the new definition of off-shell effective action, Nucl. Phys. B 234 (1984) 509 [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Barvinsky and G. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Odintsov, Does the Vilkovisky-DeWitt effective action in quantum gravity depend on the configuration space metric?, Phys. Lett. B 262 (1991) 394 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. S. Huggins, G. Kunstatter, H. Leivo and D. Toms, The Vilkovisky-DeWitt effective action for quantum gravity, Nucl. Phys. B 301 (1988) 627 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  55. N. Nielsen, The Einstein-Maxwell system, Ward identities and the Vilkovisky construction, arXiv:1109.2699 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tang.

Additional information

ArXiv ePrint: 1109.4001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Wu, YL. Gravitational contributions to gauge Green’s functions and asymptotic free power-law running of gauge coupling. J. High Energ. Phys. 2011, 73 (2011). https://doi.org/10.1007/JHEP11(2011)073

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)073

Keywords

Navigation