Skip to main content
Log in

Split flows in bubbled geometries

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a procedure to clarify part of the physical sector in the five dimensional bubble geometries based on ideas similar to the split attractor flow conjecture proposed by Denef. This procedure involves building some simple tree-like graphs that we call skeletons without referring to the moduli space. The skeleton (tree) exists if and only if it passes the existence conditions which are purely based on some local CTC’s (closed timelike curves) checking. Then, we propose the conjecture similar to Denef’s version which states that every existing skeleton (tree) should correspond to some solution in which the global absence of CTC’s is ensured. Furthermore, we propose two pictures to identify this correspondence explicitly and use some numerical examples to show how this procedure works. We also analyze the physical sector of the simplest bubbled supertube and see how the existence conditions constrain the charge parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. I. Bena and N.P. Warner, One ring to rule them all…and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  5. I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. I. Bena, C.-W. Wang and N.P. Warner, Plumbing the abyss: Black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. I. Bena, N. Bobev and N.P. Warner, Spectral flow and the spectrum of multi-center solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy enhancement and black hole microstates, arXiv:0804.4487 [SPIRES].

  12. I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].

    Article  MathSciNet  Google Scholar 

  13. F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, hep-th/0702146 [SPIRES].

  15. D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Gaiotto, A. Strominger and X. Yin, 5D black rings and 4D black holes, JHEP 02 (2006) 023 [hep-th/0504126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: From D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. M.C.N. Cheng, More bubbling solutions, JHEP 03 (2007) 070 [hep-th/0611156] [SPIRES].

    ADS  Google Scholar 

  20. J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S 2, JHEP 11 (2008) 050 [arXiv:0802.2257] [SPIRES].

    Article  Google Scholar 

  21. J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [SPIRES].

    Article  Google Scholar 

  22. P. Kraus and F. Larsen, Attractors and black rings, Phys. Rev. D 72 (2005) 024010 [hep-th/0503219] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Wei Wang.

Additional information

ArXiv ePrint: 1005.0210

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CW. Split flows in bubbled geometries. J. High Energ. Phys. 2010, 27 (2010). https://doi.org/10.1007/JHEP11(2010)027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)027

Keywords

Navigation