Skip to main content
Log in

An A 5 model of four lepton generations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the lepton sector of a four generations model based on the discrete flavor group A 5. The best features of the three family A 4 model survive, including the tribimaximal pattern of three generation neutrino mixings. At leading order the three light neutrino mass relations of \( {m_{{v_1}}} = {m_{{v_3}}} \) and \( {m_{{v_2}}} = 0 \) are predicted. The splitting of the neutrino masses can be naturally obtained as a result of the breaking of A 5 down to A 4 and a degenerate spectrum is preferred in our model. The electron mass is zero at tree level, but calculable through quantum corrections in our A 5 model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [SPIRES].

    ADS  Google Scholar 

  2. J. Erler and P. Langacker, Precision Constraints on Extra Fermion Generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [SPIRES].

    Article  ADS  Google Scholar 

  3. M.S. Chanowitz, Bounding CKM Mixing with a Fourth Family, Phys. Rev. D 79 (2009) 113008 [arXiv:0904.3570] [SPIRES].

    ADS  Google Scholar 

  4. O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [SPIRES].

    ADS  Google Scholar 

  5. P.Q. Hung and M. Sher, Experimental constraints on fourth generation quark masses, Phys. Rev. D 77 (2008) 037302 [arXiv:0711.4353] [SPIRES].

    ADS  Google Scholar 

  6. G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].

    ADS  Google Scholar 

  7. T. Cuhadar-Donszelmann, M. Karagoz, V.E. Ozcan, S. Sultansoy and G. Unel, Fourth Family Neutrinos and the Higgs Boson, JHEP 10 (2008) 074 [arXiv:0806.4003] [SPIRES].

    Article  ADS  Google Scholar 

  8. P.Q. Hung and C. Xiong, Renormalization Group Fixed Point with a Fourth Generation: Higgs-induced Bound States and Condensates, Nucl. Phys. B 847 (2011) 160 [arXiv:0911.3890] [SPIRES].

    Article  ADS  Google Scholar 

  9. P.Q. Hung and C. Xiong, Implication of a Quasi Fixed Point with a Heavy Fourth Generation: The emergence of a TeV-scale physical cutoff, Phys. Lett. B 694 (2011) 430 [arXiv:0911.3892] [SPIRES].

    ADS  Google Scholar 

  10. M.S. Chanowitz, Higgs Mass Constraints on a Fourth Family: Upper and Lower Limits on CKM Mixing, Phys. Rev. D (2010) 035018 [arXiv:1007.0043] [SPIRES].

  11. S. Dawson and P. Jaiswal, Four Generations, Higgs Physics and the MSSM, Phys. Rev. D 82 (2010) 073017 [arXiv:1009.1099] [SPIRES].

    ADS  Google Scholar 

  12. W.-S. Hou, M. Nagashima and A. Soddu, Large time-dependent CP-violation in B/s0 system and finite \( {D^0} - {\bar{D}^0} \) mass difference in four generation standard model, Phys. Rev. D 76 (2007) 016004 [hep-ph/0610385] [SPIRES].

    ADS  Google Scholar 

  13. W.-S. Hou, H.-n. Li, S. Mishima and M. Nagashima, Fourth generation CP-violation effect on BKπ, ϕK and ρK in NLO PQCD, Phys. Rev. Lett. 98 (2007) 131801 [hep-ph/0611107] [SPIRES].

    Article  ADS  Google Scholar 

  14. A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, The Fourth family: A Natural explanation for the observed pattern of anomalies in BCP asymmetries, Phys. Lett. B 683 (2010) 302 [arXiv:0807.1971] [SPIRES].

    ADS  Google Scholar 

  15. M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [SPIRES].

    ADS  Google Scholar 

  16. W.-S. Hou, Y.-Y. Mao and C.-H. Shen, Leading Effect of CP-violation with Four Generations, Phys. Rev. D 82 (2010) 036005 [arXiv:1003.4361] [SPIRES].

    ADS  Google Scholar 

  17. B. Holdom, t’ at the LHC: The physics of discovery, JHEP 03 (2007) 063 [hep-ph/0702037] [SPIRES].

  18. B. Holdom, The heavy quark search at the LHC, JHEP 08 (2007) 069 [arXiv:0705.1736] [SPIRES].

    Article  ADS  Google Scholar 

  19. L.M. Carpenter, A. Rajaraman and D. Whiteson, Searches for Fourth Generation Charged Leptons, arXiv:1010.1011 [SPIRES].

  20. A. Lenz, H. Pas and D. Schalla, Constraints on fourth generation Majorana neutrinos, J. Phys. Conf. Ser. 259 (2010) 012096 [arXiv:1010.3883] [SPIRES].

    Article  ADS  Google Scholar 

  21. B. Holdom et al., Four Statements about the Fourth Generation, PMC Phys. A 3 (2009) 4 [arXiv:0904.4698] [SPIRES].

    Article  ADS  Google Scholar 

  22. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].

    ADS  Google Scholar 

  23. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].

    ADS  Google Scholar 

  24. E. Ma, A 4 origin of the neutrino mass matrix, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [SPIRES].

    ADS  Google Scholar 

  25. E. Ma, Aspects of the tetrahedral neutrino mass matrix, Phys. Rev. D 72 (2005) 037301 [hep-ph/0505209] [SPIRES].

    ADS  Google Scholar 

  26. E. Ma, Suitability of A 4 as a Family Symmetry in Grand Unification, Mod. Phys. Lett. A 21 (2006) 2931 [hep-ph/0607190] [SPIRES].

    ADS  Google Scholar 

  27. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].

    Article  ADS  Google Scholar 

  28. G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A 4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].

    Article  ADS  Google Scholar 

  30. A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  31. X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [SPIRES].

    Article  ADS  Google Scholar 

  32. S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [SPIRES].

    ADS  Google Scholar 

  33. S. Morisi, M. Picariello and E. Torrente-Lujan, A model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [SPIRES].

    ADS  Google Scholar 

  34. F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A 4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. P.H. Frampton and S. Matsuzaki, Renormalizable A 4 Model for Lepton Sector, arXiv:0806.4592 [SPIRES].

  36. A. Datta, F.-S. Ling and P. Ramond, Correlated hierarchy, Dirac masses and large mixing angles, Nucl. Phys. B 671 (2003) 383 [hep-ph/0306002] [SPIRES].

    Article  ADS  Google Scholar 

  37. Y. Kajiyama, M. Raidal and A. Strumia, The golden ratio prediction for the solar neutrino mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [SPIRES].

    ADS  Google Scholar 

  38. Euclid of Alexandria, Elements, Book 6, Definition 3, A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the less.

  39. C.J. Cummins and J. Patera, Polynomial Icosahedral Invariants, J. Math. Phys. 29 (1988) 1736 [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. K. Shirai, The Basis Functions and the Matrix Representations of the Single and Double Icosahedral Point Group, J. Phys. Soc. Jpn. 61 (1992) 2735.

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Luhn, S. Nasri and P. Ramond, Simple Finite Non-Abelian Flavor Groups, J. Math. Phys. 48 (2007) 123519 [arXiv:0709.1447] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. P.O. Ludl, Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv:0907.5587 [SPIRES].

  43. H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  44. L.L. Everett and A.J. Stuart, Icosahedral (A5) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [SPIRES].

    ADS  Google Scholar 

  45. W. Rodejohann, Unified Parametrization for Quark and Lepton Mixing Angles, Phys. Lett. B 671 (2009) 267 [arXiv:0810.5239] [SPIRES].

    ADS  Google Scholar 

  46. S.M. Barr and A. Zee, A New Approach to the electron-Muon Mass Ratio, Phys. Rev. D 15 (1977) 2652 [SPIRES].

    ADS  Google Scholar 

  47. L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [SPIRES].

    ADS  Google Scholar 

  48. H. Georgi and S.L. Glashow, Attempts to calculate the electron mass, Phys. Rev. D7 (1973) 2457 [SPIRES].

    ADS  Google Scholar 

  49. S.M. Barr and A. Zee, Calculating the Electron Mass in Terms of Measured Quantities, Phys. Rev. D 17 (1978) 1854 [SPIRES].

    ADS  Google Scholar 

  50. B.S. Balakrishna, Radiatively Induced Lepton Masses, Phys. Lett. B 214 (1988) 267 [SPIRES].

    ADS  Google Scholar 

  51. S.M. Barr, Light Fermion Mass Hierarchy and Grand Unification, Phys. Rev. D 21 (1980) 1424 [SPIRES].

    ADS  Google Scholar 

  52. L.E. Ibáñez, Hierarchical Suppression of Radiative Quark and Lepton Masses in Supersymmetric Guts, Phys. Lett. B 117 (1982) 403 [SPIRES].

    ADS  Google Scholar 

  53. B.S. Balakrishna, Fermion Mass Hierarchy From Radiative Corrections, Phys. Rev. Lett. 60 (1988) 1602 [SPIRES].

    Article  ADS  Google Scholar 

  54. K.S. Babu and E. Ma, Radiative Mechanisms for Generating Quark and Lepton Masses: Some Recent Developments, Mod. Phys. Lett. A 4 (1989) 1975 [SPIRES].

    ADS  Google Scholar 

  55. X.-G. He, R.R. Volkas and D.-D. Wu, Radiative Generation of Quark and Lepton Mass Hierarchies from a Top Quark Mass Seed, Phys. Rev. D 41 (1990) 1630 [SPIRES].

    ADS  Google Scholar 

  56. K.S. Babu and R.N. Mohapatra, Permutation Symmetry and the Origin of Fermion Mass Hierarchy, Phys. Rev. Lett. 64 (1990) 2747 [SPIRES].

    Article  ADS  Google Scholar 

  57. S.M. Barr, Radiative Fermion Mass Hierarchy in a Non-supersymmetric Unified Theory, Phys. Rev. D 76 (2007) 105024 [arXiv:0706.1490] [SPIRES].

    ADS  Google Scholar 

  58. B.A. Dobrescu and P.J. Fox, Quark and lepton masses from top loops, JHEP 08 (2008) 100 [arXiv:0805.0822] [SPIRES].

    Article  ADS  Google Scholar 

  59. E. Ma, A 4 origin of the neutrino mass matrix, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [SPIRES].

    ADS  Google Scholar 

  60. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A 4 Flavour Symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].

    Article  ADS  Google Scholar 

  61. C. Hagedorn, E. Molinaro and S.T. Petcov, Charged Lepton Flavour Violating Radiative Decays ℓ i j + γ in See-Saw Models with A 4 Symmetry, JHEP 02 (2010) 047 [arXiv:0911.3605] [SPIRES].

    Article  ADS  Google Scholar 

  62. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in a Supersymmetric Model with A 4 Flavour Symmetry, Nucl. Phys. B 832 (2010) 251 [arXiv:0911.3874] [SPIRES].

    Article  ADS  Google Scholar 

  63. G.-J. Ding and J.-F. Liu, Lepton Flavor Violation in Models with A 4 and S 4 Flavor Symmetries, JHEP 05 (2010) 029 [arXiv:0911.4799] [SPIRES].

    Article  ADS  Google Scholar 

  64. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  65. F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [SPIRES].

    Article  ADS  Google Scholar 

  66. B. He, T.P. Cheng and L.-F. Li, A less suppressed μeγ loop amplitude and extra dimension theories, Phys. Lett. B 553 (2003) 277 [hep-ph/0209175] [SPIRES].

    ADS  Google Scholar 

  67. P.Q. Hung, Electroweak-scale mirror fermions, μeγ and τμγ, Phys. Lett. B 659 (2008) 585 [arXiv:0711.0733] [SPIRES].

    ADS  Google Scholar 

  68. P.H. Frampton and T.W. Kephart, Simple nonAbelian finite flavor groups and fermion masses, Int. J. Mod. Phys. A 10 (1995) 4689 [hep-ph/9409330] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  69. A. Aranda, C.D. Carone and R.F. Lebed, Maximal neutrino mixing from a minimal flavor symmetry, Phys. Rev. D 62 (2000) 016009 [hep-ph/0002044] [SPIRES].

    ADS  Google Scholar 

  70. M.-C. Chen and K.T. Mahanthappa, CKM and Tri-bimaximal MNS Matrices in a SU(5) × (d) T Model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [SPIRES].

    ADS  Google Scholar 

  71. P.H. Frampton and T.W. Kephart, Flavor Symmetry for Quarks and Leptons, JHEP 09 (2007) 110 [arXiv:0706.1186] [SPIRES].

    Article  ADS  Google Scholar 

  72. P.H. Frampton, T.W. Kephart and S. Matsuzaki, Simplified Renormalizable T′ Model for Tribimaximal Mixing and Cabibbo Angle, Phys. Rev. D 78 (2008) 073004 [arXiv:0807.4713] [SPIRES].

    ADS  Google Scholar 

  73. P.H. Frampton and S. Matsuzaki, T′ Predictions of PMNS and CKM Angles, Phys. Lett. B 679 (2009) 347 [arXiv:0902.1140] [SPIRES].

    ADS  Google Scholar 

  74. C.-S. Chen, T.W. Kephart and T.C. Yuan, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Kephart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CS., Kephart, T.W. & Yuan, TC. An A 5 model of four lepton generations. J. High Energ. Phys. 2011, 15 (2011). https://doi.org/10.1007/JHEP04(2011)015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)015

Keywords

Navigation